
Parallel Repetition of Multi-party and Quantum
Games via Anchoring and Fortification

by

Mohammad Bavarian
B.Sc., University of British Columbia (2011)

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2017

c○ Massachusetts Institute of Technology 2017. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Mathematics

August 4, 2017

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Madhu Sudan

Gordon McKay Professor of Computer Science, Harvard University
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Jonathan A. Kelner

Chairman, Applied Mathematics Committee



2



Parallel Repetition of Multi-party and Quantum Games via

Anchoring and Fortification

by

Mohammad Bavarian

Submitted to the Department of Mathematics
on August 4, 2017, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract
Parallel repetition is a fundamental operation for amplifying the hardness inherent in multi-
player games. Through the efforts of many researchers in the past two decades (e.g. Feige,
Kilian, Raz, Holentstein, Rao, Braverman, etc.), parallel repetition of two-player classical
games has become relatively well-understood. On the other hand, games with entangled play-
ers (quantum games), crucial to the study of quantum non-locality and quantum cryptography,
and multi-player games were poorly understood until recently.

In this thesis, we resolve some of the major problems regarding the parallel repetition of
quantum and multi-player games by establishing the first exponential-rate hardness amplifica-
tion results for these games and hence extend the classes of games where exponential decay
rates is known considerably.

We consider two different methods for obtaining these hardness amplification results.
For our first method, we draw from the recent work of Moshkovitz on parallel repetition
of fortified games. We introduce an analytic reformulation of Moshkovitz’s fortification
framework. This reformulation allows us to expand the scope of the fortification method
to new settings. In particular, we prove parallel repetition and fortification theorems for
games with players sharing quantum entanglement, and games with more than two players
in this new framework. An important component of our work is a variant of the fortification
transformation, called ordered fortification, that preserves the entangled value of a game.

For our second method, we introduce a class of games we call anchored. Anchoring
is a simple transformation on games inspired in part by the transorfmation proposed in
the pioneering work of Feige-Kilian. Unlike the Feige-Kilian transformation, our anchoring
transformation is completeness preserving. We prove an exponential-decay parallel repetition
theorem for anchored games that involve any number of entangled players. We also prove a
threshold version of our parallel repetition theorem for anchored games.

Thesis Supervisor: Madhu Sudan
Title: Gordon McKay Professor of Computer Science, Harvard University
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Chapter 1

Introduction

A central concept in theoretical computer science and quantum information is that of a

two-player one-round game. A two-player game 𝐺 is specified by question sets 𝒳 and 𝒴,

answer sets 𝒜 and ℬ, a distribution 𝜇 over pairs of questions, and a verification predicate

𝑉 : 𝒜 × ℬ × 𝒳 × 𝒴 → {0, 1}. The game is played between two cooperating (but non-

communicating) players and a referee. The referee samples (𝑥, 𝑦) ∈ 𝒳 × 𝒴 according to 𝜇

and sends 𝑥 and 𝑦 to each player, who provide answers 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 respectively. The

players win the game if their answers satisfy the predicate 𝑉 (𝑎, 𝑏, 𝑥, 𝑦). More formally, the

value of the game, which refers the maximum probability of winning players can achieve,

corresponds to the following optimization problem

val(𝐺) = max
𝑓,𝑔

E
(𝑥,𝑦)∼𝜇

∑︁
(𝑎,𝑏)∈𝒜×ℬ

𝑉 (𝑎, 𝑏, 𝑥, 𝑦) 𝑓(𝑥, 𝑎) · 𝑔(𝑦, 𝑏), (1.1)

where 𝑓 : 𝒳 × 𝒜 → R+ and 𝑔 : 𝒴 × ℬ → R+ with the the normalization condition∑︀
𝑎 𝑓(𝑥, 𝑎) = ∑︀

𝑏 𝑔(𝑦, 𝑏) = 1.1

The main starting point of this thesis is the celebrated Parallel Repetition Theorem of

Raz [53], simplified and improved upon by many authors over the years, most notably by

Holestein [37].Beside its direct applications to PCPs [35] and the study of interactive proof

systems [10, 53], the theorem of Raz/Holenstein is one of the strongest direct product theorems

1In this thesis, we also heavily study the entangled value game, denoted by val*(𝐺), which is an important
analogous concept in quantum computing and complexity.

11



known in the literature, and as such has been very influential as the basic prototype of

establishing direct product theorem in variety of models of computations. Parallel repetition

theorems (and other direct product theorems) are often used in complexity theory in order

to perform some form of amplification, such as amplifying the completeness-soundness gap

of a proof system. A fundamental question that arises in this context is how the value of a

repeated game 𝐺⊗𝑚 relates to the value of the original game 𝐺 and the number of repetitions

𝑚.[15, 16, 39]. The Raz/Holentein theorem provides an answer to this question.

Theorem 1.1 (Raz-Holenstein). Let 𝐺 be a game and define 𝐺⊗𝑚 as the game where

the referee selects 𝑘 tuples (𝑥𝑖, 𝑦𝑖)𝑚𝑖=1 ∈ 𝒳 × 𝒴 independently according to 𝐺 and sends

𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑚) and 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑚) to Bob requiring answers in 𝒜⊗𝑚 and ℬ⊗𝑚

satisfying the predicate 𝑉 = ∏︀𝑚
𝑖=1 𝑉 (𝑎𝑖, 𝑏𝑖, 𝑥𝑖, 𝑦𝑖). Set 0 ≤ 𝜖 ≤ 1 by val(𝐺) = 1− 𝜖. Then,

val(𝐺⊗𝑚) ≤ (1− 𝜖3)−Ω(𝑚/𝑠), (1.2)

where 𝑠 = log(|𝒜| · |ℬ|).

Raz’s theorem and subsequent improvements [37, 6, 52, 13] provide a satisfactory under-

standing of the parallel repetition of classical two-player games. However, going beyond the

setting of two-player classical games, many of the techniques in these works do not directly

apply. The focus of this thesis is to address this problem by providing strong (exponential)

hardness amplification results for much more general classes of games. In particular, here

we make progress on two of the major open problems regarding the parallel repetition of

games, i.e. whether an analogue of Raz’s parallel-repetition theorem holds for (a) games with

more than two players, and (b) games with quantum players using entanglement. In the next

section, we review how we draw from the old idea of modifying games for parallel repetition,

as first appearing in the work of Feige-Kilian [30], to make progress on these problems.

1.1 Anchoring and fortification

As mentioned before, in this thesis we are interested in obtaining strong hardness amplification

and parallel repetition results for general quantum and multiplayer (more than two) games.
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The basic idea underlying our approach for achieving this is to modify the game 𝐺 before

applying parallel repetition. For this to be a valid approach, any such transformation should

be (i) efficient, in the sense of having low algorithmic complexity, and (ii) non-intrusive,

in the sense of preserving most important properties of the original game 𝐺. In particular,

since computing the value (and quantum value) of games is a hard algorithmic problem we

need the operation to preserve the value in the black-box way (or else change the value in a

controllable fashion independent of 𝐺).

In this thesis, we introduce two simple transformations on games, namely fortification and

anchoring, that can be used to convert any game to one of these desired formats. Together,

our parallel repetition theorem and our transformations [7, 8] provide simple and efficient

hardness-amplification in both the classical multiplayer and quantum settings.

1.1.1 Fortification and fortified games

In a recent work, Moshkovitz [48] introduced a simple yet powerful framework called parallel

repetition via fortification. Like Feige-Kilian and our anchoring technique, the basic idea

is to transform the game to make it more amenable to parallel repetition. But in terms of

technical ideas and tools, and also final parameters, this framework is very different to the

above. One advantage of fortification is that it does not use any of the subtle information

theoretic techniques needed in other approaches to parallel repetition, and hence leads to

overall to simpler arguments.

Despite its attractive features, the fortification framework [48] has some limitations; for

instance it is only applicable to the restricted (though very important) setting of classical

two-player projection games. The first contribution of this thesis is to expand the scope

of this framework to a wider classes of games. The following is a summary of our main

contributions to the fortification framework.

∙ Analytic formulation of fortification. The fortification framework was originally

cast in combinatorial terms; Moshkovitz’s definition of fortified games, which we describe

in Section 3.1, involves a guarantee on the value of every sufficiently large rectangular

subgame of a game. In our analytic reformulation, fortified games are defined in terms

13



of substrategies, which one can think of as randomized strategies for the game where

the probability that the players output an answer may be less than 1. This definition

behaves much more “smoothly”, allowing us to generalize them to the entangled and

multiplayer settings.

∙ Fortification of general classical games and games with more than two play-

ers. Next, we show how to fortify a general 𝑘-player game 𝐺, for any 𝑘 ≥ 2. We

show that for any two fortified general classical games 𝐺′ and 𝐻 ′, val(𝐺′ ⊗ 𝐻 ′) ≈

val(𝐺′) · val(𝐻 ′). Together this implies new gap amplification results for general (as

opposed to projection) two-player and multiplayer classical games. We note that previ-

ously [48, 11] the fortification framework was limited to two-player classical projection

games, so our extension is significant even for the two-player case.

∙ An entangled-value preserving variant of concatenation. A major obstacle in

extending the fortification framework to the quantum setting is that concatenation, the

main ingredient of the original fortification results, does not in general preserve the

entangled value. That is, if 𝐺′ is the fortification of 𝐺, it doesn’t generally hold that

Val*(𝐺′) = Val*(𝐺) (even though val(𝐺′) = val(𝐺)). This is problematic for obtaining

gap amplification results: if Val*(𝐺) = 1, then Val*(𝐺⊗𝑛) = 1, but Val*(𝐺′⊗𝑛) could

be exponentially small!

To resolve this issue, we augment the ordinary concatenation procedure of [48] by giving

the players some auxiliary advice input (see Definition 3.4) which helps in keeping

the entangled value unchanged. Using this, we define a variant of the fortification

transformation which we call ordered fortification. As desired, in addition to preserving

the classical value, this transformation also preserves the entangled value, which is

essential for the completeness of our gap amplification result.

∙ Fortification of games with entangled players. We show that for a general two-

player game 𝐺, its ordered-fortification 𝐺𝑂𝐹 is a two-player game such that val*(𝐺𝑂𝐹 ) =

val*(𝐺), and is also quantumly fortified. We then prove that for any two quantumly

fortified games 𝐺′ and 𝐻 ′, Val*(𝐺′⊗𝐻 ′) ≈ Val*(𝐺′) ·Val*(𝐻 ′). Together this implies
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a new general gap amplification method for entangled two-player games. This (see

Theorem 3.3) is the most technically challenging component of this work.

Let us note that our extensions of the fortification approach, as described in the last three

items above, are ultimately enabled by the analytic viewpoint described in point 1.

We describe our main results for fortification in detail in Chapter 3. In particular, see

Theorems 3.2, 3.3, 3.5, 3.24 for the formal statements of results of the chapter.

Next, we discuss anchoring approach to parallel repetition. Anchoring in general leads

to better parameter performance than fortification (especially in terms of answer alphabet

size), but relies on more technical information theoretical arguments. Despite being weaker in

terms of parameters, fortification is interesting as it relies on a very different set of techniques

than the typically information theoretic parallel repetition results.

1.1.2 Anchoring and anchored games

Next, we study the process of anchoring and anchored games. Using the anchoring trans-

formation, we obtain hardness amplification results that are arguably even stronger than

the results for fortified games. In particular, unlike fortification where one needs to know in

advance the number of repetition before modifying the game (i.e. the transformation 𝐺→ 𝐺′

depends on number of repetitions 𝑚), anchoring is oblivious to the number of rounds of

repetitions and has no extra blow-up depending on 𝑚. Furthermore, unlike in fortification,

there is no alphabet blow-up in anchoring.

Regarding anchoring, we have the following theorem which applies to games with any

number of players, with or without entanglement.

Theorem 1.2 (Main Theorem of Chapter 4, informal). There exists a polynomial-time

transformation (called anchoring) that takes the description of an arbitrary 𝑘-player game 𝐺

and returns a game 𝐺⊥ with the following properties:

1. (Classical hardness amplification)

If val(𝐺) = 1− 𝜀 then val(𝐺⊥) = 1− 3
4𝜀 and val(𝐺⊗𝑛⊥ ) = exp(−Ω(𝜀3 · 𝑛)).

2. (Quantum hardness amplification)

If val*(𝐺) = 1− 𝛿 then val*(𝐺⊥) = 1− 3
4𝛿 and val*(𝐺⊗𝑛⊥ ) = exp(−Ω(𝛿8 · 𝑛)).
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The implied constants in the Ω(·) only depend on the number of players 𝑘 and the cardinality

of the answer sets of 𝐺.

We obtain an efficient hardness amplification method from this theorem in the following

way: suppose given a 𝑘-player game 𝐺 whose entangled value is either 1 or at most 1− 𝛿.

By letting 𝑛 = poly(log 𝛽−1, 𝛿−1), the game 𝐺⊗𝑛⊥ (the 𝑛-fold repetition of the anchored game

𝐺⊥) has value either 1 or at most 𝛽.

We note that even though, unlike fortification, anchoring does not preserve the game value

exactly this is not a significant issue since it changes the value in a controllable (linear) fashion

(see Definition 1.4). In particular, an important aspect of the anchoring transformation is

that it preserves quantum completeness, meaning that if val*(𝐺) = 1, then val*(𝐺⊥) = 1.

Similar game transformations in previous works (such as the one by Feige and Kilian [30, 43])

do not preserve quantum completeness, and thus cannot be used for hardness amplification

in the same way.

We also obtain a threshold version of the theorem above, which states that the probability

that the players win more than an val*(𝐺) + 𝛾 fraction of the 𝑛 instances of 𝐺⊥ in 𝐺⊗𝑛⊥ goes

to 0 exponentially fast in 𝑛:

Theorem 1.3 (Threshold theorem, informal). Let 𝐺 be a 𝑘-player game with val*(𝐺) = 1−𝛿,

and 𝐺⊥ the anchored version of 𝐺. Then for all integer 𝑛 ≥ 1 the probability that in the game

𝐺⊗𝑛⊥ the players can win more than (1− 3
4𝛿 + 𝛾)𝑛 instances of 𝐺⊥ is at most exp(−Ω(𝛾9𝑛)),

where the implied constant only depends on the number of players 𝑘 and the cardinality of

the answer sets of 𝐺.

The advantage of having a threshold theorem is that it also implies that parallel repetition

reduces the completeness error in addition to the soundness error. This is useful in situations

where we are trying to distinguish between, say, val*(𝐺) ≥ 0.99 and val*(𝐺) ≤ 0.5. The

entangled value of 𝐺⊗𝑛⊥ in both cases is exponentially small. However, if the referee instead

checks that the number of instances won in 𝐺⊗𝑛⊥ is above a certain threshold, then we can

obtain a new game where either the value is exponentially close to 1 or exponentially close to

0. See Theorem 4.16 for a more precise statement.

Finally, we present an application of our threshold theorem to the so-called Quantum
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PCP Conjecture. The main application of Raz’s parallel repetition theorem is to amplify

the completeness/soundness gap of probabilistically checkable proofs, in order to obtain

stronger hardness of approximation results (see, e.g., [35]). Similarly, our threshold bound

would perform the same function for the multiprover games formulation of the Quantum

PCP Conjecture. It is crucial that our threshold bound applies to games with any number of

players; so far, it appears that the types of games that arise in approaches to the Quantum

PCP Conjecture (games version) involve more than two players [41, 49]. We discuss this in

more detail in Section 4.2.

Let us now describe the anchoring transformation. Here, we discuss anchoring for two-

player games. We discuss the more general case in Chapter 4 in detail.

Definition 1.4 (Basic anchoring). Let 𝐺 be a two player game with question distribution

𝜇 on 𝒳 × 𝒴, and verification predicate 𝑉 . Let 0 < 𝛼 < 1. In the 𝛼-anchored game 𝐺⊥ the

referee chooses a question pair (𝑥, 𝑦) ∈ 𝒳 × 𝒴 according to 𝜇, and independently and with

probability 𝛼 replaces each of 𝑥 and 𝑦 with an auxiliary “anchor” symbol ⊥ to obtain the pair

(𝑥′, 𝑦′) ∈ (𝒳 ∪ {⊥})× (𝒴 ∪ {⊥}) which is sent to the players as their respective questions. If

any of 𝑥′, 𝑦′ is ⊥ the referee accepts regardless of the players’ answers; otherwise, the referee

checks the players’ answers according to the predicate 𝑉 .

For a choice of 𝛼 = 1 −
√

3
2 it holds that both val(𝐺⊥) = 3

4val(𝐺) + 1
4 and val*(𝐺⊥) =

3
4val*(𝐺) + 1

4 . One can think of 𝐺⊥ as playing the original game 𝐺 with probability 3/4, and

a trivial game with probability 1/4. The term “anchored” refers to the fact that question

pairs chosen according to 𝜇 are all “anchored” by a common question (⊥, ⊥). Though the

existence of this anchor question makes the game 𝐺⊥ easier to play than the game 𝐺, it

facilitates showing that the repeated game 𝐺⊗𝑛⊥ is hard. At a high level, the anchor questions

provide a convenient way to handle the complicated correlations that may arise when the

players use non-product strategies in the repeated game.

Our parallel repetition results more generally apply to a class of games we call anchored.

The anchoring transformation of Theorem 1.2 produces games of this type; however, anchored

games can be more general. We give a full definition of anchored games in Section 4.3. We

note that the class of anchored games includes the class of free games, a class of games for
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which quantum parallel repetition theorems were previously shown in [19, 40, 20].

Why anchoring is useful. Given the fact that anchoring games just amounts to adding

some simple dummy variable (Definition 1.4), it can be quite surprising that anchoring is

useful for proving parallel repetition. This is related to the quantum dependency-breaking

problem which we briefly describe next.

In most known proofs of classical parallel repetition theorems (except for fortification), the

key step consists of bounding the players’ success probability in most instances of 𝐺 in 𝐺⊗𝑛,

conditioned on the player winning a significant fraction of the instances. Let 𝑊 denote this

italicized event. Conditioning on 𝑊 introduces correlations between the players’ questions,

making this task non-trivial. Existing proofs rely on a “rounding argument” showing how

two players can play the game 𝐺 as if it were embedded as the 𝑖-th instance in the repeated

game 𝐺, conditioned on 𝑊 . Thus the success probability in the 𝑖-th game, conditioned on 𝑊 ,

cannot be much higher than the value of 𝐺, concluding the proof through a straightforward

inductive argument.

In the classical case the rounding argument relies on the ability for Alice and Bob to

sample a dependency-breaking variable Ω𝑥,𝑦 which a priori depends on both inputs 𝑥 and 𝑦.

Once Ω𝑥,𝑦 is sampled by the players they can simulate the 𝑖-th instance of 𝐺, conditioned

on 𝑊 . The main technical work goes in showing that Ω𝑥 ≈ Ω𝑥,𝑦 ≈ Ω𝑦, where “≈” denotes

closeness in statistical distance, and Ω𝑥 (resp. Ω𝑦) denotes the distribution of Ω𝑥,𝑦 averaged

over 𝑦 (resp. over 𝑥). This implies that Ω can be locally sampled by either player without

communication through the use of a correlated sampling procedure.

In the quantum case the rounding argument seems to require that Alice and Bob jointly

sample a dependency-breaking quantum state |Ω𝑥,𝑦⟩, which again depends on both their inputs

(although it is technically more complicated, as a first approximation |Ω𝑥,𝑦⟩ can be thought

of as the players’ post-measurement state, conditioned on 𝑊 and their 𝑖-th inputs being

(𝑥, 𝑦)). Designing a state that simultaneously allows Alice and Bob to (a) simulate the

execution of the 𝑖-th game in 𝐺⊗𝑛 conditioned on 𝑊 , and (b) locally generate |Ω𝑥,𝑦⟩ without

communication is the main obstacle to proving a fully general parallel repetition theorem for

entangled games.
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The proofs of parallel repetition for free games [40, 19, 20] and projection games [28]

resolve this obstacle by arguing for the existence of local unitaries 𝑈𝑥 and 𝑉𝑦 and a state |Ω⟩

such that

𝑈𝑥 ⊗ 𝑉𝑦|Ω⟩ ≈ |Ω𝑥,𝑦⟩. (1.3)

Thus the players only need to share |Ω⟩ at the beginning of the simulation, and having

received their separate inputs 𝑥 and 𝑦, apply the local unitaries 𝑈𝑥 and 𝑉𝑦 to obtain (an

approximation of) the desired state |Ω𝑥,𝑦⟩. The argument heavily relies on either the product

question distribution assumption for [40, 19, 20] or special symmetries of projection games in

the case of [28].

The difficulty in extending the argument for free games to the case of general games is

to show that the local unitaries each only depend on the input to a single player. In fact

with the definition of |Ω𝑥,𝑦⟩ used in these works it appears likely that this statement does

not hold, thus a different approach must be found. When the game is anchored we are

able to use the anchor question in order to show the existence of unitaries 𝑈𝑥 and 𝑉𝑦 that

achieve (1.3) and depend only on a single player’s question each. Achieving this requires us

to introduce dependency-breaking states |Ω𝑥,𝑦⟩ that are more complicated than those used in

the free games case, and also involve the classical dependency-breaking variables of Raz and

Holenstein.

We prove (1.3) by proving a sequence of approximate equalities: first we show that

for most 𝑥 there exists 𝑈𝑥 such that (𝑈𝑥 ⊗ I)|Ω⊥,⊥⟩ ≈ |Ω𝑥,⊥⟩, where |Ω⊥,⊥⟩ denotes the

dependency-breaking state in the case that both players receive the anchor question “⊥”, and

|Ω𝑥,⊥⟩ denotes the state when Alice receives 𝑥 and Bob receives “⊥”. Then we show that

for every 𝑦 such that 𝜇(𝑦|𝑥) > 0 there exists a unitary 𝑉𝑦 such that (I⊗ 𝑉𝑦)|Ω𝑥,⊥⟩ ≈ |Ω𝑥,𝑦⟩.

Accomplishing this step requires ideas and techniques going beyond those used in the free

games case. See Sections 4.3 and 4.4 for more on this topic.

1.2 Related work

Hardness amplification is a central method in complexity theory and cryptography for

reducing the soundness error of interactive proofs and argument systems and hence parallel
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repetition, and other hardness amplification based on it, have been extensively studied [33,

30, 53, 37, 51, 34, 36]. We refer to the surveys by Feige and Raz [29, 54] for an extensive

historical account of the classical parallel repetition theorem and its connections to PCPs and

multiprover interactive proof systems, and instead focus on more recent results, specifically

those pertaining to the quantum or multiplayer parallel repetition.

The study of multi-player games in the quantum setting is due to close connection to Bell

inequalities, non-locality in quantum physics [9, 21] which is of great important to quantum

cryptography and complexity [56, 47, 24, 58]. We refer to [17, 61, 22] for more on entangled

games.

Going back to parallel repetition, the first results regarding the parallel repetition of

entangled games was obtained by Cleve et al. [22, 23]. The general idea of modifying the

game in order to facilitate the analysis of parallel repetition originates from the work of

Feige and Kilian [30] who introduced the confuse/miss-match style repetition of games. The

Feige-Kilian type parallel repetition was later extended by Kempe and Vidick [43] to the

quantum setting allowing them to obtain the first general parallel repetition theorem for

quantum games. However, their transformation did not preserve the entangled value, and

hence did not lead to a fully general hardness amplification method for entangled games.

The main result underlying Chapter 3 is Moshkovitz [48], where the framework of parallel

repetition via fortification was first introduced. Some simplifications and corrections to the

work of Moshkovitz appeared in Bhangale et al. [11]. In particular, an important contribution

of [11] was the clarification of the best bounds possible in classical fortification theorems [11,

Appendix C].

Another important set of ideas underlying our work is related to the analytic approach to

parallel repetition pioneered by Dinur and Steurer [27], further extended by Dinur et al. [28].

Our analytic reformulation of fortification framework is very much inspired by the ideas in

these works.

Yet another different stream of work, directly related to Chapter 4, follows the original

ideas of Raz and Holenstein [53, 37] by taking a more information theoretic approach to parallel

repetition. The first results in this direction were obtained by Chailloux and Scarpa [19] and

Jain et al. [40] who prove exponential-decay parallel repetition results for free two-player
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games. Their analysis, as well as the follow-up work of Chung et al. [20], provided the basis

for Chapter 4 of this thesis.

Turning to the multiplayer setting, very little was known prior to the works presented in

this thesis. It is folklore that free games with any number of players satisfy an exponential

parallel repetition theorem, and this was explicitly proved in both classical and quantum

settings in [20]. The only parallel repetition bound that applies to all classical multiplayer

games is due to Verbitsky [59], but the rate of decay proved there is very slow – it is essentially

an inverse Ackermann-like function. Multiplayer parallel repetition has been studied in the

setting of non-signaling strategies, a superset of entangled strategies which allows the players

to generate any correlations that do not imply communication. Buhrman et al. [18] show

that the non-signaling value of a game 𝐺 with any number of players decays exponentially

under parallel repetition, with a rate of decay that depends on the entire description of the

game 𝐺. Arnon-Friedman et al. [3] and Lancien and Winter [46] achieve similar results using

a different technique based on “de Finetti reductions”.

Beside the above prior work, we should mention some newer paper which the results of

this thesis has inspired. Among these, a notable one is due to Yuen [63] where he uses the

ideas in Chapter 4 to show that the entangled value of a general repeated entangled game

must decay to 0 polynomially fast (provided the base game has entangled value less than one).

Another interesting paper is [26] which establishes exponential-decay bounds for expander

games, which includes anchored games as a special case.

1.3 Organization

In Chapter 2, we introduce some basic lemmas and definitions. In Chapter 3, we present our

fortification framework and results and in Chapter 4, we present our anchoring results.

The organization of Chapter 3 is as follows. In Section 3.2, we introduce the notion of

substrategies, induced strategies, and other basic definitions that are used throughout the

chapter. In Section 3.3, we present the formal definition of analytically fortified games. The

main parallel repetition theorem is proved in Section 3.4. Theorems 3.2 and 3.3 are proved

in Sections 3.5 and 3.7, respectively. The main theorem of Chapter 3, Theorem 3.5, is proved
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by reduction to Theorem 3.3. This reduction is presented in Section 3.6.

The organization of Chapter 4 is as follows. We first introduce the formal definition of

anchored games in Section 4.1. In Section 4.2 we give a brief discussion of the Quantum PCP

Conjecture, and an application of our threshold theorem (Theorem 4.16) to it. In Section 4.3,

we give an overview of the techniques underlying the results of the chapter, mainly focusing

on the general ideas and leaving the specifics to each subsequent section. In Section 4.4 we

present the proof of the quantum parallel repetition theorem for anchored games, as well

as the threshold theorem. In Section 4.5 we present the result on the parallel repetition of

multiplayer classical anchored games.

Finally, in Chapter 5 we summarize the main contributions of the thesis and present some

open problems.
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Chapter 2

Preliminaries

2.1 Games and parallel repetition

In the introduction we introduced the notion of classical value of a two-player game (1.1).

Here we recall the notion of entangled value.

For a two-player game 𝐺 = (𝒳 × 𝒴 ,𝒜 × ℬ, 𝜇, 𝑉 ), an entangled strategy consists of a

state (a vector with ℓ2 norm 1) |𝜓⟩ ∈ C𝑑 ⊗ C𝑑 and set of positive semi-definite matrices

{𝐴𝑎𝑥}𝑥∈𝒳 ,𝑎∈𝒜, {𝐵𝑏
𝑦}𝑦∈𝒴,𝑏∈ℬ such that

∀𝑥, 𝑦 :
∑︁
𝑎

𝐴𝑎𝑥 =
∑︁
𝑏

𝐵𝑏
𝑦 = I.

The entangled value of 𝐺, denoted by val*(𝐺), is defined as the supremum value attained by

all valid strategies:

Val*(𝐺) = sup
{𝐴𝑎

𝑥},{𝐵𝑏
𝑦},|𝜓⟩

E
(𝑥,𝑦)∼𝜇

∑︁
𝑎,𝑏:𝑉 (𝑥,𝑦,𝑎,𝑏)=1

⟨𝜓|𝐴𝑎𝑥 ⊗𝐵𝑏
𝑦|𝜓⟩.

Note that the case of 𝑑 = 1 corresponds to the classical strategies which means val(𝐺) ≤

Val*(𝐺). It is well-know that for many games [21, 61] this inequality is strict, that is val(𝐺) <

Val*(𝐺).
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2.1.1 Multiplayer games

A 𝑘-player game 𝐺 = (𝒳 ,𝒜, 𝜇, 𝑉 ) is specified by a question set 𝒳 = 𝒳 1 × 𝒳 2 × · · · × 𝒳 𝑘,

answer set 𝒜 = 𝒜1×𝒜2×· · ·×𝒜𝑘, a probability measure 𝜇 on 𝒳 , and a verification predicate

𝑉 : 𝒜×𝒳 → {0, 1}. Throughout this thesis, we use superscripts in order to denote which

player an input/output symbol is associated with. For example, we write 𝑥1 to denote the

input to the first player, and 𝑎𝑡 to denote the output of the 𝑡-th player. Finally, to denote

the tuple of questions/answers to all 𝑘 players we write 𝑥 = (𝑥1, . . . , 𝑥𝑘) and 𝑎 = (𝑎1, . . . , 𝑎𝑘)

respectively.

The classical value of a game 𝐺 is denoted by val(𝐺) and defined as

val(𝐺) := sup
𝑓1,...,𝑓𝑘

E
(𝑥1,...,𝑥𝑘)∼𝜇

[︁
𝑉
(︁
(𝑓 1(𝑥1), . . . , 𝑓𝑘(𝑥𝑘), (𝑥1, . . . , 𝑥𝑘)

)︁]︁

where the supremum is over all functions 𝑓𝑖 : 𝒳𝑖 → 𝒜𝑖; these correspond to deterministic

strategies used by the players. It is easy to see that the classical value of a game is unchanged

if we allow the strategies to take advantage of public or private randomness.

The entangled value of 𝐺 is denoted by val*(𝐺) and defined as

val*(𝐺) := sup
|𝜓⟩∈(C𝑑)⊗𝑘

𝑀1,...,𝑀𝑘

E
(𝑥1,...,𝑥𝑘)∼𝜇

∑︁
(𝑎1,...,𝑎𝑘):

𝑉 ((𝑎1,...,𝑎𝑘),(𝑥1,...,𝑥𝑘))=1

⟨𝜓|𝑀1(𝑥1, 𝑎1)⊗ · · · ⊗𝑀𝑘(𝑥𝑘, 𝑎𝑘)|𝜓⟩

where the supremum is over all integer 𝑑 ≥ 2, 𝑘-partite pure states |𝜓⟩ in (C𝑑)⊗𝑘, and

𝑀1, . . . ,𝑀𝑘 for each player. Each 𝑀 𝑡 is a set of POVM measurements {𝑀(𝑥𝑡, 𝑎𝑡)}𝑎𝑡∈𝒜𝑡

acting on C𝑑, one for each question 𝑥𝑡 ∈ 𝒳 𝑡.

2.1.2 Repeated games

Let 𝐺 = (𝒳 ,𝒜, 𝜇, 𝑉 ) be a 𝑘-player game, with 𝒳 = 𝒳 1 × · · · × 𝒳 𝑘 and 𝒜 = 𝒜1 × · · · × 𝒜𝑘.

Let 𝜇⊗𝑛 denote the product probability distribution over 𝒳⊗𝑛 = ⨂︀𝑛
𝑖=1𝒳𝑖, where each 𝒳𝑖

is a copy of 𝒳 . Similarly let 𝒜⊗𝑛 = ⨂︀𝑛
𝑖=1𝒜𝑖 where each 𝒜𝑖 is a copy of 𝒜. 1 Let

1We will use the tensor product notation (“
⨂︀

”) to denote product across coordinates in a repeated game,
and the traditional product notation (“×”) to denote product across players.
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𝑉 ⊗𝑛 : 𝒜⊗𝑛 × 𝒳⊗𝑛 → {0, 1} denote the verification predicate that is 1 on question tuple

(𝑥1, . . . , 𝑥𝑛) ∈ 𝒳⊗𝑛 and answer tuple (𝑎1, . . . , 𝑎𝑛) ∈ 𝒜⊗𝑛 iff for all 𝑖, 𝑉 (𝑎𝑖, 𝑥𝑖) = 1. We define

the 𝑛-fold parallel repetition of 𝐺 to be the 𝑘-player game 𝐺⊗𝑛 = (𝒳⊗𝑛,𝒜⊗𝑛, 𝜇⊗𝑛, 𝑉 ⊗𝑛). For

brevity, we sometimes denote this by 𝐺𝑛.

When working with games with more than 2 players, we use subscripts to denote which

game round/coordinate a question/answer symbol is associated with. For example, by 𝑥𝑡𝑖 we

mean the question to the 𝑡-th player in the 𝑖-th round. While this is overloading notation

slightly (because superscripts are meant to indicate tuples), we use this convention for the

sake of readability. When 𝑥𝑛 refers to a tuple (𝑥1, . . . , 𝑥𝑛) and when 𝑥𝑡𝑖 refers to the 𝑡-th

player’s question in the 𝑖-th coordinate should be clear from context.

2.2 Probability distributions

Given a distribution 𝜇, by 𝑧 ∼ 𝜇 we mean that the random variable 𝑧 is distributed according

to 𝜇. For a set 𝒮, by 𝑧 ∼ 𝒮 we mean 𝑧 ∼ 𝑈𝒮 where 𝑈𝒮 is the uniform distribution over 𝒮.

We let capital letters denote random variables and lower case letters denote specific samples.

We will use subscripted sets to denote tuples, e.g., 𝑋[𝑛] := (𝑋1, . . . , 𝑋𝑛), 𝑥[𝑛] = (𝑥1, . . . , 𝑥𝑛),

and if 𝐶 ⊂ [𝑛] is some subset then 𝑋𝐶 will denote the sub-tuple of 𝑋[𝑛] indexed by 𝐶.

We use P𝑋 to denote the probability distribution of random variable 𝑋, and P𝑋(𝑥) to

denote the probability that 𝑋 = 𝑥 for some value 𝑥. For multiple random variables, e.g.,

𝑋, 𝑌, 𝑍, P𝑋𝑌 𝑍(𝑥, 𝑦, 𝑧) denotes their joint distribution with respect to some probability space

understood from context.

We use P𝑌 |𝑋=𝑥(𝑦) to denote the conditional distribution P𝑌 𝑋(𝑦, 𝑥)/P𝑋(𝑥), which is

defined when P𝑋(𝑥) > 0. When conditioning on many variables, we usually use the shorthand

P𝑋|𝑦,𝑧 to denote the distribution P𝑋|𝑌=𝑦,𝑍=𝑧. For example, we write P𝑉 |𝜔−𝑖,𝑥𝑖,𝑦𝑖
to denote

P𝑉 |Ω−𝑖=𝜔−𝑖,𝑋𝑖=𝑥𝑖,𝑌𝑖=𝑦𝑖
. For an event 𝑊 we let P𝑋𝑌 |𝑊 denote the distribution conditioned on

𝑊 . We use the notation E𝑋 𝑓(𝑥) and EP𝑋
𝑓(𝑥) to denote the expectation ∑︀𝑥 P𝑋(𝑥)𝑓(𝑥).

Let P𝑋0 be a distribution of 𝒳 , and for every 𝑥 in the support of P𝑋0 , let P𝑌 |𝑋1=𝑥 be a
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conditional distribution defined over 𝒴 . We define the distribution P𝑋0P𝑌 |𝑋1 over 𝒳 × 𝒴 as

(P𝑋0P𝑌 |𝑋1)(𝑥, 𝑦) := P𝑋0(𝑥) · P𝑌 |𝑋1=𝑥(𝑦).

Additionally, we write P𝑋0𝑍P𝑌 |𝑋1 to denote the distribution (P𝑋0𝑍P𝑌 |𝑋1)(𝑥, 𝑧, 𝑦) := P𝑋0𝑍(𝑥, 𝑧)·

P𝑌 |𝑋1=𝑥(𝑦).

For two random variables 𝑋0 and 𝑋1 over the same set 𝒳 , P𝑋0 ≈𝜀 P𝑋1 indicates that the

total variation distance between P𝑋0 and P𝑋1 ,

‖P𝑋0 − P𝑋1‖ := 1
2
∑︁
𝑥∈𝒳
|P𝑋0(𝑥)− P𝑋1(𝑥)|,

is at most 𝜀.

The following simple lemma will be used repeatedly.

Lemma 2.1. Let Q𝐹 and S𝐹 be two probability distributions of some random variable 𝐹 , and

let R𝐺|𝐹 be a conditional probability distribution for some random variable 𝐺, conditioned on

𝐹 . Then

‖Q𝐹R𝐺|𝐹 − S𝐹R𝐺|𝐹‖ = ‖Q𝐹 − S𝐹‖.

Proof. Note that ‖Q𝐹R𝐺|𝐹 − S𝐹R𝐺|𝐹‖ is equal to

1
2
∑︁
𝑓,𝑔

|Q(𝑓)R(𝑔|𝑓)− S(𝑓)R(𝑔|𝑓)| = 1
2
∑︁
𝑓

|Q(𝑓)− S(𝑓)| ·
(︃∑︁

𝑔

R(𝑔|𝑓)
)︃

= 1
2
∑︁
𝑓

|Q(𝑓)− S(𝑓)|

= ‖Q𝐹 − S𝐹‖.

2.3 Some matrix analytic facts

Choi-Jamiolkowski isomorphism. We make use of the correspondence between bipartite

states |𝜓⟩ ∈ ℋ1 ⊗ ℋ2 and linear operators 𝐿 : ℋ*2 → ℋ1 given by the Choi-Jamiolkowski
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isomorphism. Explicitly, let |𝜓⟩ ∈ C𝑑 ⊗ C𝑑 be a quantum state and consider a Schmidt basis

for |𝜓⟩ so we have |𝜓⟩ = ∑︀𝑑
𝑖=1
√
𝜆𝑖|𝑖⟩|𝑖⟩ where 𝜆𝑖 ∈ R≥0, up to a local change of basis. Set

𝜌 :=
𝑑∑︁
𝑖=1

𝜆𝑖|𝑖⟩⟨𝑖|. (2.1)

Proposition 2.2. Let 𝑍,𝑊 be two linear operators acting on C𝑑 and let |𝜓⟩ and 𝜌 be as

above. Then,

⟨𝜓|𝑍 ⊗𝑊 |𝜓⟩ = Tr(𝑍𝜌1/2𝑊 𝑇𝜌1/2).

Proof. Both expressions evaluate to ∑︀𝑑
𝑖,𝑗=1

√︁
𝜆𝑖𝜆𝑗 𝑍𝑖𝑗 ·𝑊𝑖𝑗.

For a density matrix 𝜌 and a matrix 𝐴 for convenience we sometimes denote Tr(𝐴𝜌) by

Tr𝜌(𝐴).

Matrix norms and inequalities. The Frobenius norm of a matrix 𝐴 ∈ C𝑛×𝑚 is defined as

‖𝐴‖𝐹 =
√︁

Tr(𝐴𝐴†). The trace norm is defined as ‖𝐴‖𝑡𝑟 = Tr
√
𝐴𝐴†. The following analogue

of Proposition 3.20 will be used repeatedly in our argument.

Claim 2.3. Let 𝑀 be a bipartite 𝜆-spectral expander on vertex set 𝑋 ′ ∪𝑋. Let {𝐴𝑥′}𝑥′∈𝑋′

and 𝜌 be positive semidefinite matrices. For all 𝑥 ∈ 𝑋, define 𝐴𝑥 = E𝑥′∼𝑁(𝑥) 𝐴𝑥′ and define

𝐴 = E𝑥∼𝜇𝐴𝑥. Then

E
𝑥∼𝜇

Tr𝜌((𝐴𝑥 − 𝐴)2) ≤ 2𝜆2 · E
𝑥′∼𝜇′

Tr𝜌(𝐴2
𝑥′). (2.2)

Proof. Define 𝑆𝑥′ = 𝜌1/2𝐴𝑥′ , 𝑆𝑥 = 𝜌1/2𝐴𝑥, and 𝑆 = E𝑥 𝑆𝑥 = 𝜌1/2𝐴. Using that 𝑀 is a

bipartite 𝜆-spectral expander, for any fixed entry (𝑖, 𝑗)

E
𝑥
|(𝑆𝑥)𝑖𝑗 − 𝑆𝑖𝑗|2 ≤ 𝜆2 · E

𝑥′
|(𝑆𝑥′)𝑖𝑗 − 𝑆𝑖𝑗|2 ≤ 2𝜆2 · E

𝑥′
|(𝑆𝑥′)𝑖𝑗|2 (2.3)

Summing over all entries,

E
𝑥

∑︁
𝑖,𝑗

|(𝑆𝑥)𝑖𝑗 − 𝑆𝑖𝑗|2 = E
𝑥
‖𝑆𝑥 − 𝑆‖2

𝐹 ≤ 2𝜆2 E
𝑥′

∑︁
𝑖,𝑗

|(𝑆𝑥′)𝑖𝑗|2 = 2𝜆2 E
𝑥′
‖𝑆𝑥′‖2

𝐹 . (2.4)

27



Observing that Tr𝜌((𝐴𝑥 − 𝐴)2) = ‖𝑆𝑥 − 𝑆‖2
𝐹 and ‖𝑆𝑥′‖2

𝐹 = Tr𝜌(𝐴2
𝑥′), we obtain the desired

result.

If 𝐴 has singular value decomposition 𝐴 = 𝑈𝐽𝑉 † its pseudo-inverse is 𝐴−1 = 𝑉 𝐽−1𝑈 †,

where 𝐽−1 is obtained from 𝐽 by taking the reciprocal of non-zero diagonal entries. A simple

consequence of the singular value decomposition is the following:

Fact 2.4. Let 𝐴 be an 𝑛× 𝑛 matrix. Then there exists a unitary matrix 𝒰 such that 𝒰𝐴 is

positive semi-definite.

Proof. Write the SVD as 𝐴 = 𝑈𝐽𝑉 †, and choose 𝒰 = 𝑉 𝑈 †.

We make frequent use of the matrix Cauchy-Schwarz inequality.

Proposition 2.5. For any two matrices 𝑆, 𝑇 we have

Tr(𝑆𝑇 †) ≤ Tr(𝑆𝑆†)1/2 · Tr(𝑇𝑇 †)1/2 = ‖𝑆‖𝐹‖𝑇‖𝐹 .

If 𝑆 and 𝑇 are Hermitian,

Tr(𝑆𝑇𝑆𝑇 ) ≤ Tr(𝑆2𝑇 2).

Finally, we need a variant of Powers-Størmer inequality from [45].

Lemma 2.6. Let 𝑋, 𝑌 be positive semidefinite matrices. Then

Tr
(︁
(𝑋 − 𝑌 )4

)︁
≤ Tr

(︁
(𝑋2 − 𝑌 2)2

)︁
.

This Lemma also played a role in the analysis of Dinur et al. [28] parallel repetition. See

Kittaneh [45] for the proof.

2.4 Quantum information theory

For comprehensive references on quantum information we refer the reader to [50, 62].

For a vector |𝜓⟩, we use ‖|𝜓⟩‖ to denote its Euclidean length. For a matrix 𝐴, we will

use ‖𝐴‖1 to denote its trace norm Tr(
√
𝐴𝐴†). A density matrix is a positive semidefinite
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matrix with trace 1. The fidelity between two density matrices 𝜌 and 𝜎 is defined as

𝐹 (𝜌, 𝜎) = ‖√𝜌
√
𝜎‖1. The Fuchs-van de Graaf inequalities relate fidelity and trace norm as

1− 𝐹 (𝜌, 𝜎) ≤ 1
2‖𝜌− 𝜎‖1 ≤

√︁
1− 𝐹 (𝜌, 𝜎)2. (2.5)

For Hermitian matrices 𝐴,𝐵 we write 𝐴 ⪯ 𝐵 to indicate that 𝐴−𝐵 is positive semidefinite.

We use I to denote the identity matrix. For an operator 𝑋 and a density matrix 𝜌, we write

𝑋[𝜌] for 𝑋𝜌𝑋†. A positive operator valued measurement (POVM) with outcome set 𝒜 is a

set of positive semidefinite matrices {𝐸𝑎} labeled by 𝑎 ∈ 𝒜 that sum to the identity.

We will use the convention that, when |𝜓⟩ is a pure state, 𝜓 refers to the rank-1 density

matrix |𝜓⟩⟨𝜓|. We use subscripts to denote system labels; so 𝜌𝐴𝐵 will denote the density

matrix on the systems 𝐴 and 𝐵. A classical-quantum state 𝜌𝑋𝐸 is classical on 𝑋 and quantum

on 𝐸 if it can be written as 𝜌𝑋𝐸 = ∑︀
𝑥 𝑝(𝑥)|𝑥⟩⟨𝑥|𝑋 ⊗𝜌𝐸|𝑋=𝑥 for some probability measure 𝑝(·).

The state 𝜌𝐸|𝑋=𝑥 is by definition the 𝐸 part of the state 𝜌𝑋𝐸, conditioned on the classical

register 𝑋 = 𝑥. We write 𝜌𝑋𝐸|𝑋=𝑥 to denote the state |𝑥⟩⟨𝑥|𝑋 ⊗ 𝜌𝐸|𝑋=𝑥. We often write

expressions such as 𝜌𝐸|𝑥 as shorthand for 𝜌𝐸|𝑋=𝑥 when it is clear from context which registers

are being conditioned on. This will be useful when there are many classical variables to be

conditioned on.

For two positive semidefinite operators 𝜌, 𝜎, the relative entropy 𝑆(𝜌‖𝜎) is defined to be

Tr(𝜌(log 𝜌− log 𝜎)). The relative min-entropy 𝑆∞(𝜌‖𝜎) is defined as min{𝜆 : 𝜌 ⪯ 2𝜆𝜎}.

Let 𝜌𝐴𝐵 be a bipartite state. The mutual information 𝐼(𝐴 : 𝐵)𝜌 is defined as 𝑆(𝜌𝐴𝐵‖𝜌𝐴⊗

𝜌𝐵). For a classical-quantum state 𝜌𝑋𝐴𝐵 that is classical on 𝑋 and quantum on 𝐴𝐵, we write

𝐼(𝐴;𝐵|𝑥)𝜌 to indicate 𝐼(𝐴;𝐵)𝜌𝑥 .

The following technical lemmas will be used in Section 4.4.

Proposition 2.7 (Pinsker’s inequality). For all density matrices 𝜌, 𝜎, 1
2‖𝜌− 𝜎‖

2
1 ≤ 𝑆(𝜌‖𝜎).

Lemma 2.8. Let 𝜌 = ∑︀
𝑧 P𝑍(𝑧)|𝑧⟩⟨𝑧| ⊗ 𝜌𝑧, and 𝜌′ = ∑︀

𝑧 P𝑍′(𝑧)|𝑧⟩⟨𝑧| ⊗ 𝜌′𝑧. Then 𝑆(𝜌′‖𝜌) =

𝑆(P𝑍′‖P𝑍) + E𝑍′ [𝑆(𝜌′𝑧‖𝜌𝑧)]. In particular, 𝑆(𝜌′‖𝜌) ≥ E𝑍′ [𝑆(𝜌′𝑧‖𝜌𝑧)].

We will also use the following Lemma from [20].2 Here we present an argument that

obtains better parameters ([20] proved that ∑︀𝑛
𝑖=1 𝐼(𝑋𝑖 : 𝐴)𝜌 ≤ 2𝑆(𝜌𝑋𝐴 ‖𝜎𝑋𝐴).)

2Some versions of this lemma, though in a less compact form, also appear in [40, 19].
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Lemma 2.9 (Quantum Raz’s Lemma). Let 𝜌 and 𝜎 be two CQ states with 𝜌𝑋𝐴 = 𝜌𝑋1𝑋2...𝑋𝑛𝐴

and 𝜎 = 𝜎𝑋𝐴 = 𝜎𝑋1 ⊗ 𝜎𝑋2 ⊗ . . .⊗ 𝜎𝑋𝑛 ⊗ 𝜎𝐴 with 𝑋 = 𝑋1𝑋2 . . . 𝑋𝑛 classical in both states.

Then
𝑛∑︁
𝑖=1

𝐼(𝑋𝑖 : 𝐴)𝜌 ≤ 𝑆(𝜌𝑋𝐴 ‖𝜎𝑋𝐴). (2.6)

The conditions on 𝜌 and 𝜎 stated in the lemma are equivalent to them satisfying the following

form

𝜌𝑋𝐴 =
∑︁
𝑥

P𝑋(𝑥)|𝑥⟩⟨𝑥| ⊗ 𝜌𝐴|𝑋=𝑥, 𝜎𝑋𝐴 =
∑︁
𝑥

P′𝑋(𝑥)|𝑥⟩⟨𝑥| ⊗ 𝜎𝐴,

where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) is an 𝑛-tuple, P𝑋 an arbitrary distribution, and P′𝑋(𝑥) =∏︀𝑛
𝑖=1 P′𝑋𝑖

(𝑥𝑖) a product distribution.

Proof of Lemma 2.9. By the chain rule (Lemma 2.8) we have

𝑆(𝜌𝑋𝐴‖𝜎𝑋𝐴) = 𝑆(𝜌𝑋1‖𝜎𝑋1)+ E
𝑥1←𝜌𝑋1

𝑆(𝜌𝑋2|𝑋1=𝑥1‖𝜎𝑋2)+ . . .+ E
𝑥←𝜌𝑋1···𝑋𝑛

𝑆(𝜌𝐴|𝑋=𝑥‖𝜎𝐴), (2.7)

where 𝑥1 ← 𝜌𝑋1 means sampling 𝑥1 according to the classical distribution 𝜌𝑋1 , and similarly

for 𝑥← 𝜌𝑋1···𝑋𝑛 . Consider any of the first 𝑛 terms in (2.7). We have

E
𝑥<𝑖←𝜌𝑋1𝑋2...𝑋𝑖−1

𝑆(𝜌𝑋𝑖|𝑥<𝑖
‖𝜎𝑋𝑖

) ≥ E
𝑥<𝑖←𝜌𝑋1𝑋2...𝑋𝑖−1

𝑆(𝜌𝑋𝑖|𝑥<𝑖
‖𝜌𝑋𝑖

) = 𝐼(𝑋1 . . . 𝑋𝑖−1 : 𝑋𝑖)𝜌,

where 𝜌𝑋𝑖|𝑥<𝑖
stands for 𝜌𝑋𝑖|𝑋<𝑖=𝑥<𝑖

. Now consider the last term in (2.7):

E
𝑥←𝜌𝑋

𝑆(𝜌𝐴|𝑋=𝑥‖𝜎𝐴) ≥ E
𝑥←𝜌𝑋

𝑆(𝜌𝐴|𝑋=𝑥‖𝜌𝐴) = 𝑆(𝜌𝑋𝐴‖𝜌𝑋 ⊗ 𝜌𝐴)

= 𝐼(𝑋 : 𝐴)𝜌 =
𝑛∑︁
𝑖=1

𝐼(𝑋𝑖 : 𝐴|𝑋1𝑋2 . . . 𝑋𝑖−1)𝜌.

Summing up the last two equations and using 𝐼(𝑋𝑖 : 𝐴𝑋1 . . . 𝑋𝑖) = 𝐼(𝑋𝑖 : 𝑋1 . . . 𝑋𝑖−1)+𝐼(𝑋𝑖 :

𝐴|𝑋1 . . . 𝑋𝑖−1) implies

𝑆(𝜌𝑋𝐴‖𝜎𝑋𝐴) ≥
𝑛∑︁
𝑖=1

𝐼(𝑋𝑖 : 𝐴𝑋1 . . . 𝑋𝑖−1)𝜌 ≥
𝑛∑︁
𝑖=1

𝐼(𝑋𝑖 : 𝐴)𝜌,

where the last inequality follows from strong subadditivity, i.e., 𝐼(𝑋𝑖 : 𝑋1 . . . 𝑋𝑖−1|𝐴)𝜌 ≥ 0.
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Chapter 3

Parallel Repetition via Fortification

This chapter is based on the paper Parallel repetition via fortification: analytic view and

the quantum case, a joint work with T. Vidick and H. Yuen, published in the Proceedings

of the 8th Innovations in Theoretical Computer Science (ITCS 2017) and also presented at

the conference on the Theory of Quantum Computation, communication and cryptography

(TQC 2017).

3.1 Introduction

As mentioned in the introduction, recently Moshkovitz [48] introduced a simple yet powerful

framework for parallel repetition, called parallel repetition via fortification. In this framework,

a game 𝐺 is transformed through an operation called “fortification” to a new game 𝐺′. This

new game 𝐺′ is equivalent to 𝐺 in that val(𝐺) = val(𝐺′), but then Moshkovitz shows that

behavior of the value of fortified games under parallel repetition is much simpler than the

general case, and avoids many of the subtleties encountered in the general case. The main

benefits of fortified games are two-fold: first, their behavior under parallel repetition is much

simpler than the general case, and second, all games can be easily fortified. Thus for nearly

all intents and purposes, it suffices to focus on the parallel repetition of fortified games.

Despite its attractive features, the fortification framework [48] has some limitations; for

instance it is only applicable to the restricted (though very important) setting of classical

two-player projection games. In this chapter, we continue the study of the fortification
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approach to parallel repetition and try to expand its scope to wider classes of games. In

particular, we give an analytic reformulation of Moshkovitz’s framework which is key to

expanding the scope of the fortification method to new settings.

Before going into the details of the new analytic framework, it would be useful to review

Moshkovitz’s original combinatorial fortification framework.

The combinatorial framework. Let 𝐺 be a two-player game with question sets 𝒳 ,𝒴

and acceptance predicate 𝑉 . For 𝑆 ⊆ 𝒳 and 𝑇 ⊆ 𝒴, the subgame 𝐺𝑆×𝑇 is defined as the

game where the referee selects (𝑥, 𝑦) ∈ 𝒳 × 𝒴 according to 𝜇 conditioned on 𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇

and checks the players’ answers according to the same predicate 𝑉 (the referee accepts

automatically if 𝜇(𝑆 × 𝑇 ) = 0). A game 𝐺 is said to be (𝜀, 𝛿)-combinatorially fortified if

val(𝐺𝑆×𝑇 ) ≤ val(𝐺) + 𝜀, ∀𝑆 ⊆ 𝒳 , 𝑇 ⊆ 𝒴 , s.t. 𝜇(𝑆 × 𝑇 ) ≥ 𝛿. (3.1)

The main insight underlying [48] is that games satisfying (3.1) also satisfy a strong form of

parallel repetition (up to some number of rounds depending on 𝜀, 𝛿, and the alphabet size of

𝐺). This motivates the following approach to parallel repetition: Given a game 𝐺, Moshkovitz

transforms the game 𝐺 → 𝐺′ such that val(𝐺′) ≈ val(𝐺) and 𝐺′ is (𝜀, 𝛿)-combinatorially

fortified for an appropriate choice of (𝜀, 𝛿). Since fortified games satisfy a strong form of

parallel repetition, one expects

val(𝐺′⊗𝑚) ≈ val(𝐺′)𝑚 ≈ val(𝐺)𝑚. (3.2)

Indeed, by appropriately choosing the parameters (𝜀, 𝛿), [48] can show that the full procedure

𝐺 −→ 𝐺′ −→ 𝐺′
⊗𝑚 (3.3)

amounts to a size-efficient method of gap amplification. That is, we have

val(𝐺) ≥ 𝑐 ⇒ val(𝐺′⊗𝑚) & 𝑐𝑚

val(𝐺) ≤ 𝑠 ⇒ val(𝐺′⊗𝑚) . 𝑠𝑚
, (3.4)
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where we refer to the first condition as completeness and the second as soundness. The gap

amplification procedure of Moshkovitz 𝐺→ 𝐺′ → 𝐺′⊗𝑚 from (3.3) has three components: (i)

a preprocessing step (biregularization), (ii) fortification, (iii) parallel repetition for fortified

games.

The goal of the preprocessing step – the simplest step of the three – is to make the

game biregular (a game 𝐺 is called biregular if the marginals of questions on both Alice

and Bob sides are uniform), since it is typically easier to analyze the fortification procedure

for such games. The second step is fortification, which is the main technical ingredient of

the whole approach. It is achieved by “concatenating” the game (see Section 3.1.1 below)

with appropriate bipartite pseudorandom graphs. The third step 𝐺′ → 𝐺′⊗𝑚 is the parallel

repetition of fortified games, which as observed by [48] is considerably simpler to analyze

than the generic (non-fortified) case.

3.1.1 Results and techniques

The main result of our work is the extension of the fortification framework to general classical

games (with any number of players) and two-player entangled games. On the way to these

results we prove new results on all three components of the fortification framework: (i)

biregularization, (ii) fortification, and (iii) parallel repetition. In this subsection, we discuss

some of these results in detail.

Parallel repetition. A main contribution of [48] was the realization that the two-player

projection fortified games satisfy a strong form of parallel repetition, up to an additive error.

This additive error depended on the parameters of fortification as well as the alphabet size of

the fortified game. In this work, we prove an improved parallel repetition theorem (Theorem

3.24) which has the same dependance in the parameters of fortification, but instead of the

alphabet size of the resulting fortified game, it only depends on the alphabet size of the

original game (which has exponentially smaller alphabet size). This new parallel repetition

theorem is crucial for extending the fortification framework to the setting of general (as

opposed to projection) two-player games.

Let us remark that the reason why alphabet blow-up of fortification does not cause an
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issue for projection games is because for projection games it suffices to only fortify one side

of the game (by working with so-called “square projection" version of the game). As a result

there is no alphabet blow-up for the “unfortified” side, which allows the arguments of [48, 11]

to go through. This one-sided fortification does not work for general games, which is why we

need Theorem 3.24.

Fortification. We start with a definition. Let 𝐺 = (𝒳 × 𝒴 ,𝒜× ℬ, 𝜇, 𝑉 ) be a game, and

𝑀 and 𝑃 two bipartite graphs over vertex sets (𝒳 ′,𝒳 ) and (𝒴 ′,𝒴) respectively. For each

𝑥 ∈ 𝒳 or 𝑥′ ∈ 𝒳 ′ let 𝑁(𝑥) ⊆ 𝒳 ′ and 𝑁(𝑥′) ⊆ 𝒳 denote the set of neighbors of 𝑥 and 𝑥′,

respectively (similarly for any 𝑦, 𝑦′).

Definition 3.1 (Concatenated game [48]). In the concatenated game 𝐺′ = (𝑀 ∘𝐺 ∘ 𝑃 ), the

referee selects questions (𝑥, 𝑦) according to 𝜇, and independently selects a random neighbor

𝑥′ for 𝑥 using 𝑀 , and 𝑦′ for 𝑦 using 𝑃 . The players receive questions 𝑥′ and 𝑦′ and respond

with assignments 𝑎′ : 𝑁(𝑥′) → 𝒜 and 𝑏′ : 𝑁(𝑦′) → ℬ respectively. The players win if

𝑉 (𝑎′(𝑥), 𝑏′(𝑦), 𝑥, 𝑦) = 1.

Our first two main results show how, both in the classical and quantum settings, any

game can be fortified by concatenating it with bipartite graphs 𝑀 and 𝑃 with sufficiently

good spectral expansion. (See Section 3.2.4 for the definition of spectral expanders, and

Section 3.3.1 for the notion of weak fortification.)

Theorem 3.2. Let 𝐺 be a biregular game and 𝑀 and 𝑃 two bipartite 𝜆-spectral expanders.

If 𝜆 ≤ 𝜀
2

√︁
𝛿
2 , then the concatenated game 𝐺′ = (𝑀 ∘𝐺 ∘ 𝑃 ) is (𝜀, 𝛿)-weakly fortified against

classical substrategies.

Theorem 3.3. Let 𝐺 be a biregular game and 𝑀 and 𝑃 two bipartite 𝜆-spectral expanders.

If 𝜆 ≤ 𝜀2𝛿
56 , then the concatenated game 𝐺′ = (𝑀 ∘ 𝐺 ∘ 𝑃 ) is (𝜀, 𝛿)-weakly fortified against

entangled strategies.

We stress that both in the quantum and classical settings the procedure used to fortify a

game is precisely the same, i.e. concatenation with spectral expanders, and the only difference

is in the resulting parameters. Despite the similarities, the proof of Theorem 3.3 is significantly

more involved, requiring several new ideas and substantial matrix analytic arguements.
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Next we discuss a distinctively quantum phenomenon which makes the construction of a

full quantum gap amplification theorem – quantum analogue of (3.4) – considerably more

difficult. As it turns out, even though Theorem 3.3 is sufficient to prove the soundness

case of the gap amplification theorem, the concatenation procedure used in the process can

undermine the completeness condition (i.e. Val*(𝐺′⊗𝑚) & Val*(𝐺)𝑚 in general fails to hold).

The issue is as follows: let 𝐺 be a game and 𝐺′ = (𝑀 ∘ 𝐺 ∘ 𝑃 ) be a concatenated

version of 𝐺. Classically we have val(𝐺′) = val(𝐺). Quantumly, even though we still have

Val*(𝐺′) ≤ Val*(𝐺) the other direction in general fails: we would have liked to argue that

the players in 𝐺′ are able to utilize the strategy in 𝐺 to achieve the same success probability

in the concatenated game, but this seems impossible: having received 𝑥′ ∈ 𝒳 ′ and 𝑦′ ∈ 𝒴 ′,

the players have access to lists 𝑁(𝑥′) ⊆ 𝒳 and 𝑁(𝑦′) ⊆ 𝒴 that they know contain the true

questions of the referee, i.e. 𝑥* ∈ 𝑁(𝑥′), 𝑦* ∈ 𝑁(𝑦′). The players would like to apply their

optimal strategy in 𝐺 to each and every (𝑥, 𝑦) ∈ 𝑁(𝑥′)×𝑁(𝑦′) simultaneously, but this is in

general impossible in the quantum setting.1

Note that the same issue does not arises classically because the optimal strategy in 𝐺 can

be taken to be a deterministic one, and the players in 𝐺′ can use the same labeling suggested

by the optimal strategy in 𝐺 to give labels to all of 𝑁(𝑥′) and 𝑁(𝑦′) simultaneously. This

strategy however relies on the fact that classically different questions have a simultaneous

labeling, a fact which certainly has no quantum analogue.

We resolve the above issue using a novel entangled value-preserving variant of fortification

which we call ordered fortification. The basic idea for ordered fortification is to give the

players some extra advice information which helps in preserving the entangled value.

Let 𝐺 be a game and 𝐺′ = (𝑀 ∘𝐺 ∘𝑃 ) be a concatenated version of 𝐺. There is an extra

parameter 𝑙 in the construction defined as 𝑙 = max {max𝑥′∈𝒳 ′ |𝑁(𝑥′)|,max𝑦′∈𝒴 ′ |𝑁(𝑦′)|}.

Definition 3.4 (Ordered concatenation). Let 𝐺 and 𝐺′ be as above. In 𝐺′𝑂𝐹 , the referee

samples (𝑥, 𝑦) according to 𝐺 and picks random neighbors 𝑥′ ∼ 𝑁(𝑥) and 𝑦′ ∼ 𝑁(𝑦)

independently. She then also picks two random injective maps 𝑟𝑥′ : 𝑁(𝑥′) → [𝑙] and

𝑠𝑦′ : 𝑁(𝑦′) → [𝑙] conditioned on 𝑠𝑥′(𝑥) = 𝑟𝑦′(𝑦). The referee sends 𝑥′ and 𝑟𝑥′ to the first
1This is because the measurement operators of different questions do not in general commute which

prevents Alice (say) to obtain simultaneous answers for all questions in 𝑁(𝑥′). As a further illustration of
this issue, see Section 3.2.2 for an example of a game where Val*(𝐺′) < Val*(𝐺).
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player, and 𝑦′ and 𝑠𝑦′ to the second and accepts if the players’ answers 𝑎′ : 𝑁(𝑥′)→ 𝒜 and

𝑏′ : 𝑁(𝑦′)→ ℬ satisfy 𝑉 (𝑎′(𝑥), 𝑏′(𝑦), 𝑥, 𝑦) = 1.

Here the crucial point is that 𝑟𝑥′ and 𝑠𝑦′ are correlated. They give matching labels to

true questions 𝑥 and 𝑦. To achieve the same winning probability as in 𝐺, the players in 𝐺′𝑂𝐹
will share 𝑙 copies of the state |𝜓⟩ from the optimal strategy in 𝐺. For each 𝑥* ∈ 𝑁(𝑥′) with

label 𝑖 = 𝑟𝑥′(𝑥*), the first player will apply the optimal 𝐺-strategy for 𝑥 to the 𝑖th copy of

|𝜓⟩ (similarly for the second player). The fact that 𝑟𝑥′(𝑥) = 𝑠𝑦′(𝑦) ensures that for the true

questions 𝑥 and 𝑦 the players apply the optimal 𝐺 strategies to the same copy of |𝜓⟩, and

hence are able to win with exactly the same winning probability as in 𝐺.

Of course, the crucial part here is that even though the auxiliary information in 𝑟𝑥′ and

𝑠𝑦′ is helpful to the players for replicating the winning probability of 𝐺, it should not be “too

helpful". In particular, we need to still be able to prove that 𝐺′𝑂𝐹 is fortified with appropriate

parameters. This point is established by the following theorem.

Theorem 3.5 (Ordered Fortification). Let 𝐺 be a game and 𝑀 and 𝑃 be two bipartite graphs

as above. Let 𝐺′𝑂𝐹 be constructed from 𝐺 and 𝐺′ = (𝑀 ∘𝐺 ∘ 𝑃 ) as in Definition 3.4. Then,

we have

Val*(𝐺′𝑂𝐹 ) = Val*(𝐺).

Furthermore if 𝑀 and 𝑃 are 𝜆-spectral expanders and 𝜆 ≤ 𝜀2𝛿
56 , then 𝐺′𝑂𝐹 is also (𝜀, 𝛿) weakly

fortified.

We prove Theorem 3.5 in Section 3.6 using a spectral argument that reduces it to Theorem

3.3. Beside the above, we also prove a simple multiplayer fortification in Section 3.5 for

classical games. It may be possible to adapt the proofs of Theorem 3.3 and Theorem 3.28

to obtain a multiplayer fortification theorem for entangled games. Although plausible, some

further technical issues arise in this case which we do not pursue here.

Biregularization. As already mentioned, biregularization is a minor (but necessary) step

in the fortification framework. Our biregularization lemmas are presented and proved in

Appendix 3.2.3. In terms of final statement, our biregularization lemmas are incomparable

with those of [48, 11]. For example, in the case of graphical games, we prove a biregularization
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lemma which preserves the value exactly but has a cubic blow-up in the number of questions,

whereas the biregularization lemmas from [11, 48] had a nearly linear blow-up but only

preserved value up to an additive error. Moreover, in this work we prove biregularization

for all games whereas [11, 48] only considered graphical games. (See Subsection 3.2.3 for

definitions.)

3.2 Preliminaries

3.2.1 Substrategies

The main goal of this section is to introduce the notion of classical and quantum substrategies

which replace the notion of subgames from [48, 11]. As subgames were central in the

combinatorial framework of [48], substrategies are similarly central to our analytic framework.

Let 𝐺 be a game with question sets 𝒳 ,𝒴, answer sets 𝒜,ℬ, predicate 𝑉 , and question

distribution 𝜇 on 𝒳 × 𝒴 .

Definition 3.6 (Classical substrategies). Let 𝐺 = (𝒳 × 𝒴 ,𝒜 × ℬ, 𝜇, 𝑉 ) be a two-player

game. A classical substrategy is given by (𝑓, 𝑔) where 𝑓 : 𝒳 ×𝒜 → [0, 1], 𝑔 : 𝒴 × ℬ → [0, 1]

satisfy

∀𝑥 ∈ 𝒳 , 𝑓(𝑥) :=
∑︁
𝑎

𝑓(𝑥, 𝑎) ≤ 1, ∀𝑦 ∈ 𝒴 , 𝑔(𝑦) :=
∑︁
𝑏

𝑔(𝑦, 𝑏) ≤ 1.

We call (𝑓, 𝑔) a “complete strategy" (sometimes simply strategy) if equality holds in all above

inequalities, i.e. 𝑓(𝑥) = 𝑔(𝑦) = 1 for all 𝑥, 𝑦.

Definition 3.7. Given a substrategy (𝑓, 𝑔), the value of 𝐺 with respect to (𝑓, 𝑔) is given by

val(𝐺, 𝑓, 𝑔) := E
(𝑥,𝑦)∼𝜇

∑︁
𝑎∈𝒜,𝑏∈ℬ

𝑉 (𝑎, 𝑏, 𝑥, 𝑦) 𝑓(𝑥, 𝑎) · 𝑔(𝑦, 𝑏). (3.5)

The classical value of 𝐺 is

val(𝐺) := sup
𝑓,𝑔

val(𝐺, 𝑓, 𝑔), (3.6)

where the supremum is taken over all complete strategies 𝑓, 𝑔.
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We note that the definition given by (3.6) can be easily seen to be equivalent to the more

traditional definition of the classical value, i.e.

val(𝐺) := max
𝑝:𝒳→𝒜
𝑞:𝒴→ℬ

E
(𝑥,𝑦)∼𝜇

𝑉 (𝑝(𝑥), 𝑞(𝑦), 𝑥, 𝑦), (3.7)

because any strategy 𝑓 : 𝒳 × 𝒜 → [0, 1], 𝑔 : 𝒴 × ℬ → [0, 1] can be written as convex

combination of a collection of strategies of {0, 1} valued strategies; on the other hand, taking

supremum over 𝑓, 𝑔 which are {0, 1} valued is precisely equivalent to (3.7).

Next, we extend the above notions to the quantum setting.

Definition 3.8 (Quantum substrategies). Let 𝐺 = (𝒳 × 𝒴 ,𝒜 × ℬ, 𝜇, 𝑉 ) be a two-player

game. A quantum (or entangled) substrategy for 𝐺 is a tuple (|𝜓⟩, {𝐴𝑎𝑥}, {𝐵𝑏
𝑦}) defined

by an integer 𝑑 ∈ N, a unit vector |𝜓⟩ ∈ C𝑑×𝑑 and sets of positive semi-definite matrices

{𝐴𝑎𝑥}𝑥∈𝒳 ,𝑎∈𝒜, {𝐵𝑏
𝑦}𝑦∈𝒴,𝑏∈ℬ over C𝑑 satisfying

∀𝑥 ∈ 𝒳 , 𝐴𝑥 :=
∑︁
𝑎

𝐴𝑎𝑥 ≤ I, ∀𝑦 ∈ 𝒴 , 𝐵𝑦 :=
∑︁
𝑏

𝐵𝑏
𝑦 ≤ I. (3.8)

If 𝐴𝑥 = 𝐵𝑦 = I for every 𝑥, 𝑦 the quantum substrategy is called a “complete strategy"

(sometimes simply strategy).

Definition 3.9. Given a quantum substrategy (|𝜓⟩, {𝐴𝑎𝑥}, {𝐵𝑏
𝑦}), the value of 𝐺 with respect

to (|𝜓⟩, {𝐴𝑎𝑥}, {𝐵𝑏
𝑦}) is given by

Val*(𝐺, |𝜓⟩, {𝐴𝑎𝑥}, {𝐵𝑏
𝑦}) = E

(𝑥,𝑦)∼𝜇

∑︁
𝑎,𝑏

𝑉 (𝑎, 𝑏, 𝑥, 𝑦)⟨𝜓|𝐴𝑎𝑥 ⊗𝐵𝑏
𝑦|𝜓⟩.

The entangled value of 𝐺 is defined as

Val*(𝐺) = sup
|𝜓⟩,{𝐴𝑎

𝑥},{𝐵𝑏
𝑦}

Val*(𝐺, |𝜓⟩, {𝐴𝑎𝑥}, {𝐵𝑏
𝑦}), (3.9)

where the supremum is taken over all complete strategies (|𝜓⟩, {𝐴𝑎𝑥}, {𝐵𝑏
𝑦}).
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3.2.2 Concatenated games

Let 𝐺 = (𝒳 ×𝒴 ,𝒜×ℬ, 𝜇, 𝑉 ) be a game, and 𝑀 and 𝑃 two bipartite graphs over vertex sets

(𝒳 ′,𝒳 ) and (𝒴 ′,𝒴) respectively. For each 𝑥 ∈ 𝒳 or 𝑥′ ∈ 𝒳 ′ let 𝑁(𝑥) ⊆ 𝒳 ′ and 𝑁(𝑥′) ⊆ 𝒳

denote the set of neighbors of 𝑥 and 𝑥′, respectively (similarly for any 𝑦, 𝑦′). Recall the

definition of Concatenated Games from the introduction.

Definition (Definition 3.1 restated). In the concatenated game 𝐺′ = (𝑀 ∘ 𝐺 ∘ 𝑃 ), the

referee selects questions (𝑥, 𝑦) according to 𝜇, and independently selects a random neighbor

𝑥′ for 𝑥 using 𝑀 , and 𝑦′ for 𝑦 using 𝑃 . The players receive questions 𝑥′ and 𝑦′ and respond

by assignments 𝑎′ : 𝑁(𝑥′) → 𝒜 and 𝑏′ : 𝑁(𝑦′) → ℬ respectively. The players win if

𝑉 (𝑎′(𝑥), 𝑏′(𝑦), 𝑥, 𝑦) = 1.

For a concatenated game 𝐺′ = (𝑀 ∘𝐺 ∘ 𝑃 ), we refer to 𝐺′ as the outer game and to 𝐺 as

the inner game.

Let 𝐺′ = (𝑀 ∘ 𝐺 ∘ 𝑃 ) be a concatenated game. Let 𝑑𝒳 ′ = max𝑥′∈𝒳 ′ |𝑁(𝑥′)|, 𝑑𝒴 ′ =

max𝑦′∈𝐵′ |𝑁(𝑦′)|. Then, the alphabet of the concatenated game is given by 𝒜′ = 𝒜𝑑𝒳 ′ ,

ℬ′ = ℬ𝑑𝒴′ . Similarly, it is easy to see that the distribution 𝜇′ of questions in 𝐺′ is given by

𝜇′(𝑥′, 𝑦′) = E(𝑥,𝑦)∼𝜇
1𝑥′∈𝑁(𝑥)
|𝑁(𝑥)| ·

1𝑦′∈𝑁(𝑦)
|𝑁(𝑦)| .

Definition 3.10. Let 𝐺′ = (𝑀 ∘𝐺∘𝑃 ) be a concatenated game. To any pair of substrategies

(𝑓, 𝑔) for 𝐺′ we associate the induced substrategy2

𝑓(𝑥, 𝑎) := E
𝑥′∼𝑁(𝑥)

∑︁
𝑎′:𝑎′(𝑥)=𝑎

𝑓(𝑥′, 𝑎′), 𝑔(𝑦, 𝑏) := E
𝑦′∼𝑁(𝑦)

∑︁
𝑏′:𝑏′(𝑦)=𝑏

𝑓(𝑦′, 𝑏′). (3.10)

Similarly, given an entangled substrategy (|𝜓⟩, {𝐴𝑎′
𝑥′}, {𝐵𝑏′

𝑦′}) for 𝐺′, we define the induced

substrategy as

𝐴𝑎𝑥 := E
𝑥′∼𝑁(𝑥)

∑︁
𝑎′(𝑥)=𝑎

𝐴𝑎
′

𝑥′ , 𝐵𝑏
𝑦 := E

𝑦′∼𝑁(𝑦)

∑︁
𝑏′(𝑦)=𝑏

𝐵𝑏′

𝑦′ . (3.11)

Intuitively, an induced strategy is a strategy for the inner game in which the players

proceed as follows: given question 𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒴 and a strategy (𝑓, 𝑔) for the outer game, the
2Note the slight (but convenient) abuse of notation due to the use of the same letter to represent a

substrategy and the corresponding induced substrategy. The more accurate but more cumbersome way of
denoting the induced strategies in in [?]’s language would have been 𝑀𝑓 and 𝑃𝑔.

39



players select two random neighbors of their questions 𝑥′ ∈ 𝑁(𝑥), 𝑦′ ∈ 𝑁(𝑦) independently,

and play according to the labeling of 𝑥, 𝑦 suggested by (𝑓, 𝑔) at 𝑥′ and 𝑦′.

The following simple proposition will play an important role throughout the paper.

Proposition 3.11. Let 𝐺′ = (𝑀 ∘𝐺 ∘𝑃 ) be a concatenated game. The value of any classical

strategy (𝑓, 𝑔) (resp. quantum strategy (|𝜓⟩, {𝐴𝑎′
𝑥′}, {𝐵𝑏′

𝑦′})) in the outer game 𝐺′ is equal to

the value of the induced strategy in the inner game 𝐺:

val(𝐺′, 𝑓, 𝑔) = val(𝐺, 𝑓, 𝑔) and Val*(𝐺′, |𝜓⟩, {𝐴𝑎′

𝑥′}, {𝐵𝑏′

𝑦′}) = Val*(𝐺, |𝜓⟩, {𝐴𝑎𝑥}, {𝐵𝑏
𝑦}).

(3.12)

As a consequence,

val(𝐺′) ≤ val(𝐺), and Val*(𝐺′) ≤ Val*(𝐺). (3.13)

Furthermore,

val(𝐺′) = val(𝐺). (3.14)

Proof. The first equality in (3.12) follows from linearity of expectation and the definition of

induced strategies as

val(𝐺′, 𝑓, 𝑔) = E
(𝑥,𝑦)∼𝜇

E
𝑥′∼𝑁(𝑥)

E
𝑦′∼𝑁(𝑦)

∑︁
𝑎′∈𝒜′,𝑏′∈ℬ′

𝑉 (𝑎′(𝑥), 𝑏′(𝑦), 𝑥, 𝑦) 𝑓(𝑥′, 𝑎′) · 𝑔(𝑦′, 𝑏′)

= E
(𝑥,𝑦)∼𝜇

∑︁
𝑎∈𝒜,𝑏∈ℬ

𝑉 (𝑎, 𝑏, 𝑥, 𝑦) 𝑓(𝑥, 𝑎) · 𝑔(𝑦, 𝑏)

= val(𝐺, 𝑓, 𝑔).

The second equality is proved similarly. The two inequalities (3.13) follow directly from (3.12).

To show (3.14) it remains to show that val(𝐺′) ≥ val(𝐺). Consider an optimal deterministic

strategy for 𝐺 given by 𝑝 : 𝒳 → 𝒜 and 𝑞 : 𝒴 → ℬ. For any 𝑥′ ∈ 𝒳 ′, 𝑦′ ∈ 𝒴 ′ define

𝑎′ : 𝑁(𝑥′)→ 𝒜 according to 𝑝 and 𝑏′ : 𝑁(𝑦′)→ ℬ according to 𝑞. It is easy to see that this

achieves the same value in 𝐺′ as (𝑝, 𝑞) did in 𝐺.

As mentioned in the introduction, the quantum analogue of (3.14) does not hold in general.

For example, consider the case that 𝑀 and 𝑃 are complete bipartite graphs. In this case,
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the players playing 𝐺′ = (𝑀 ∘ 𝐺 ∘ 𝑃 ) need to provide a labeling to all vertices in 𝒳 and

𝒴 simultaneously. But this is essentially just a classical strategy as the labelings for 𝒳 ,𝒴

are now fixed. Hence, Val*(𝐺′) = val(𝐺), the classical value, which in many cases could be

much smaller than Val*(𝐺).

3.2.3 Biregularization

As in [48, 11] we prove our fortification theorems for the special class of biregular games.

Definition 3.12. A two-prover game 𝐺 = (𝒳 × 𝒴 ,𝒜 × ℬ, 𝜇, 𝑉 ) is called biregular if the

marginals of 𝜇 on 𝒳 and 𝒴 are both uniform.

The following lemma justifies that for our purposes we may always assume a game is

biregular.

Lemma 3.13 (Biregularization lemma). Let 𝐺 = (𝒳 ×𝒴 ,𝒜×ℬ, 𝜇, 𝑉 ) be a two-prover game

and 𝜏 ∈ (0, 1) a fixed constant. There exists an efficient algorithm that given 𝐺 produces a

biregular game 𝐺int with question sets 𝒳int and 𝒴int of cardinality at most

|𝒳int| ≤
8|𝒳 |2|𝒴|

𝜏
, |𝒴int| ≤

8|𝒳 ||𝒴|2
𝜏

, (3.15)

the same answer alphabet size as 𝐺, and value satisfying

val(𝐺) ≤ val(𝐺𝑖𝑛𝑡) ≤ val(𝐺) + 𝜏, Val*(𝐺) ≤ Val*(𝐺𝑖𝑛𝑡) ≤ Val*(𝐺) + 𝜏. (3.16)

Note that (3.16) implies that applying the Biregularization Lemma to a game never

decreases its value, and hence the procedure is completeness preserving.

A widely used class of games in applications are so-called graphical games, for which we

can get an improved biregularization result that does not require any approximation factor 𝜏 .

Definition 3.14. A graphical game 𝐺 is a game where the questions are given by choosing an

edge of a bipartite graph uniformly at random (i.e. 𝐸 ⊆ 𝒳 ×𝒴 and 𝜇(𝑥, 𝑦) = 1
|𝐸| if (𝑥, 𝑦) ∈ 𝐸

and 𝜇(𝑥, 𝑦) = 0 otherwise). The predicate and the answers do not have any restrictions.
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Lemma 3.15 (Biregularization lemma, graphical case). Suppose 𝐺 is two-prover graphical

game with 𝐸 edges between (𝒳 ,𝒴). There exists an efficient algorithm that given 𝐺 produces

a biregular game 𝐺int with question sets 𝒳int and 𝒴int bounded by

|𝒳int| ≤ |𝐸| · |𝒳 | ≤ |𝒳 |2|𝒴|, |𝒴int| ≤ |𝐸| · |𝒴| ≤ |𝒳 ||𝒴|2, (3.17)

the same answer alphabet size as 𝐺, and the value satisfying

val(𝐺) = val(𝐺𝑖𝑛𝑡) Val*(𝐺) = Val*(𝐺𝑖𝑛𝑡). (3.18)

Remark 3.16. In the above, we can allow for multiple edges across vertices of 𝐺. In this

case 𝐸 must be taken as a multi-set and the bound |𝐸| ≤ |𝒳 ||𝒴| used in (3.17) must be

suitably modified.

Interestingly, our technique for proving the biregularization lemmas is concatenation itself!

We start by proving the second lemma for graphical games, and derive the general case by

reduction.

Graphical games. Suppose 𝐺 is a graphical game: there is a set of edges 𝐸 ⊆ 𝒳 × 𝒴

such that 𝜇(𝑥, 𝑦) = 1
|𝐸| for all (𝑥, 𝑦) ∈ 𝐸. In this case we have

𝜇(𝑥) = |𝑁(𝑥)|
|𝐸|

, 𝜇(𝑦) = |𝑁(𝑦)|
|𝐸|

, ∀𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒴 . (3.19)

Let 𝑑𝑥 := |𝑁(𝑥)| denote the degree of 𝑥, and set 𝑆𝑥 be the set {𝑥} × [𝑑𝑥]. Define

𝒳int =
⋃︁
𝑥∼𝒳

𝑆𝑥.

Note that |𝒳int| = |𝐸| ≤ |𝒳 ||𝒴|. Define 𝑀𝑖𝑛𝑡((𝑥, 𝑖), 𝑥) = 1
𝑑𝑥

for 𝑖 ∈ {1, . . . , 𝑑𝑥}, and 0

otherwise. Construct 𝒴int and 𝑃𝑖𝑛𝑡 similarly.

Proposition 3.17. Let 𝐺𝑖𝑛𝑡 = 𝑀𝑖𝑛𝑡 ∘ 𝐺 ∘ 𝑃𝑖𝑛𝑡. Then marginal of 𝜇𝑖𝑛𝑡 induced on 𝒳int and
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𝒴int is uniform. Moreover, we have

val(𝐺𝑖𝑛𝑡) = val(𝐺), val*(𝐺𝑖𝑛𝑡) = val*(𝐺). (3.20)

Proof. It is easy to see that for all 𝒳int = (𝑥, 𝑖) ∈ 𝒳int we have 𝜇𝑖𝑛𝑡(𝑥𝑖𝑛𝑡) = 1
|𝐸| and similarly

for all 𝑦𝑖𝑛𝑡 ∈ 𝒴int. The claims val(𝐺𝑖𝑛𝑡) = val(𝐺) and val*(𝐺𝑖𝑛𝑡) ≤ val*(𝐺) are true for all

concatenated games in general. The final claim val*(𝐺𝑖𝑛𝑡) ≥ val*(𝐺) follows by considering

the strategy 𝐴(𝑥,𝑖) = 𝐴𝑥, 𝐵(𝑦,𝑗) = 𝐵𝑦 which achieves the same value as (𝐴𝑥, 𝐵𝑦) in 𝐺.

General case. Although graphical games include many games considered in applications,

it would nevertheless still be nice to extend the above construction to all games. We do not

know how to do this exactly, but we can achieve an approximate variant.

The idea is essentially to approximate a general game by a graphical game. More formally,

let 𝜏 ∈ (0, 1) be an error parameter and 𝑞 an integer such that |𝐸|
𝜏
≤ 𝑞 ≤ 2|𝐸|

𝜏
. We have

𝜏

2|𝐸| ≤
1
𝑞
≤ 𝜏

|𝐸|
. (3.21)

We would like to define a game �̃� in which all probabilities in the underlying distribution

�̃�(𝑥, 𝑦) are fractions with denominator 𝑞. Let 𝒳 = 𝒳 ∪ {𝑥𝑛𝑢𝑙} and 𝒴 = 𝒴 ∪ {𝑦𝑛𝑢𝑙}. For every

(𝑥, 𝑦) ∈ 𝒳 × 𝒴 set

�̃�(𝑥, 𝑦) = ⌊𝑞 · 𝜇(𝑥, 𝑦)⌋
𝑞

. (3.22)

Finally let �̃�(𝑥𝑛𝑢𝑙, 𝑦𝑛𝑢𝑙) such that �̃� is a proper probability distribution (i.e. by transferring

the excess probabilities to (𝑥𝑛𝑢𝑙, 𝑦𝑛𝑢𝑙)) and put an arbitrary winnable predicate on (𝑥𝑛𝑢𝑙, 𝑦𝑛𝑢𝑙).

Proposition 3.18. The game �̃� is a graphical game with 𝑞 (possibly parallel) edges. Moreover,

we have

val(𝐺) ≤ val(�̃�) ≤ val(𝐺) + 𝜏, val*(𝐺) ≤ val*(�̃�) ≤ val*(𝐺) + 𝜏. (3.23)

A few remarks are in order: firstly, since the previous construction for graphical games

applies equally well in the presence of multiples edges, we can combine it with the above
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preprocessing to prove Lemma 3.13. Secondly, note that the operation 𝐺 → �̃� is value-

increasing and hence preserves perfect completeness. Thirdly, note that the right scale for

the error parameter 𝜏 is 𝑐−𝑠
2 where 𝑐− 𝑠 is the completeness-soundness gap.

Proof. By construction all �̃�(𝑥, 𝑦) are integer multiples of 1
𝑞
. This ensures that the same is

true for �̃�(𝑥𝑛𝑢𝑙, 𝑦𝑛𝑢𝑙). Since 𝜇(𝑥, 𝑦) ≥ �̃�(𝑥, 𝑦) for all (𝑥, 𝑦), for any strategy (𝑓, 𝑔) for 𝐺 we

have

1− val(𝐺, 𝑓, 𝑔) = E
(𝑥,𝑦)∼𝜇

∑︁
𝑉 (𝑎,𝑏,𝑥,𝑦)=0

𝑓(𝑥, 𝑎) · 𝑔(𝑦, 𝑏) ≥ 1− val(�̃�, 𝑓, 𝑔),

which shows that val(𝐺) ≤ val(�̃�). For the other direction, consider an optimal strategy

(𝑓, 𝑔) for �̃� (which necessarily always wins on (𝑥𝑛𝑢𝑙, 𝑦𝑛𝑢𝑙)). We have,

1− val(𝐺) ≤ 1− val(𝐺, 𝑓, 𝑔) = E
(𝑥,𝑦)∼𝜇

∑︁
𝑉 (𝑎,𝑏,𝑥,𝑦)=0

𝑓(𝑥, 𝑎) · 𝑔(𝑦, 𝑏)

≤
∑︁
𝑥,𝑦

�̃�(𝑥, 𝑦)
∑︁

𝑉 (𝑎,𝑏,𝑥,𝑦)=0
𝑓(𝑥, 𝑎) · 𝑔(𝑦, 𝑏) +

∑︁
(𝑥,𝑦)∈𝐸

(𝜇(𝑥, 𝑦)− �̃�(𝑥, 𝑦))

≤ 1− val(�̃�) + 𝜏

The quantum case is similar.

3.2.4 Expanders

The method used in [48, 11] for fortifying a game is concatenation with sufficient pseudorandom

bipartite graphs. This is done using extractors in [48] whereas expanders are employed in

[11].3 Here we follow the latter approach and use expanders.

Let 𝑀 = (𝒳 ′ × 𝒳 , 𝐸) be a bipartite graph. For 𝑥 ∈ 𝒳 let 𝑁(𝑥) ⊆ 𝒳 ′ denote the set

of neighbors of 𝑥 and similarly for 𝑥′ ∈ 𝒳 ′. We shall work with graphs that are 𝒳 -regular,

i.e. 𝑑 = |𝑁(𝑥)| for all 𝑥 ∈ 𝒳 . Define distributions 𝜇 and 𝜇′ on 𝒳 and 𝒳 ′ via

𝜇(𝑥) = 1
|𝒳 |

, 𝜇′(𝑥′) = |𝑁(𝑥′)|
𝑑

.

3The two approaches however lead to essentially to similar parameters (e.g. 𝜆 = 𝑂(𝜀
√

𝛿) to get (𝜀, 𝛿)-
fortified graph where 𝜆 is the second largest singular value of normalized adjacency matrix of the concatenating
graph.); moreover, in the classical setting the approaches are in fact are more or less equivalent. See [11] for
more.
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for all 𝑥 ∈ 𝒳 and 𝑥′ ∈ 𝒳 ′. Note that 𝜇′(𝑥′) is the probability of obtaining 𝑥′ by sampling

𝑥 ∼ 𝜇 and taking a random neighbor of (according 𝑀) 𝑥 . Letℳ be the following normalized

adjacency matrix of 𝑀

ℳ(𝑥, 𝑥′) =

⎧⎪⎨⎪⎩
1
𝑑
·
√︂

𝜇(𝑥)
𝜇′(𝑥′) if 𝑥′ ∈ 𝑁(𝑥)

0 otherwise

We usually view ℳ as an operator from ℓ2(𝒳 ′) to ℓ2(𝒳 ). Note that when 𝑀 is a biregular

expander we get the simpler definition ℳ(𝑥, 𝑥′) = 1
𝑑

√︂
|𝒳 ′|
|𝒳 | for 𝑥′ ∈ 𝑁(𝑥), and 0 otherwise.

Definition 3.19. A bipartite graph 𝑀 is called a 𝜆-spectral expander if the second-largest

singular value of ℳ is at most 𝜆.

A simple useful proposition for us is the following:

Proposition 3.20. Let 𝑀 = (𝒳 ′×𝒳 , 𝐸) be a bipartite 𝜆-spectral expander. For 𝑓 : 𝒳 ′ → R

and 𝑥 ∈ 𝒳 let 𝑓(𝑥) = E𝑥′∼𝑁(𝑥) 𝑓(𝑥′), and 𝑓 = E𝑥′∼𝜇′ 𝑓(𝑥′) = E𝑥∼𝜇 𝑓(𝑥). Then

E
𝑥∼𝜇

(𝑓(𝑥)− 𝑓)2 ≤ 𝜆2 E
𝑥′∼𝜇′

(𝑓(𝑥′)− 𝑓)2. (3.24)

Proof. Let 𝑝𝜇 ∈ R𝒳 , 𝑝𝜇′ ∈ R𝒳 ′ to unit vectors defined as 𝑝𝜇(𝑥) :=
√︁
𝜇(𝑥) and 𝑝𝜇′(𝑥′) :=√︁

𝜇(𝑥′). Let𝑞𝒳 (𝑥) :=
√︁
𝜇(𝑥) 𝑓(𝑥), 𝑞𝒳 ′(𝑥′) :=

√︁
𝜇(𝑥′) 𝑓(𝑥′).

First, observe that ℳ 𝑝𝜇′ = 𝑝𝜇 and ℳ𝑡 𝑝𝜇′ = 𝑝𝜇. It follows that (𝑝𝜇, 𝑝𝜇′) form a pair of

singular vectors of ℳ. Moreover, it is easy to see4 that these are top singular vectors which

shows that ‖ℳ‖𝑜𝑝 = 1. Now notice that

E
𝑥′←𝜇′

(𝑓(𝑥′)− 𝑓)2 =
∑︁
𝑥′

(
√︁
𝜇(𝑥′)𝑓(𝑥′)− 𝑓

√︁
𝜇(𝑥′))2 = ‖𝑞𝒳 ′ − 𝑓𝑝𝜇′‖2

2, (3.25)

Second, observe

ℳ 𝑞𝒳 ′ = 𝑞𝒳 . (3.26)

4e.g. by appealing to the Perron-Frobenius theorem.
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As such, (3.24) precisely corresponds to

‖𝑞𝒳 − 𝑓 𝑝𝜇‖2
2 = ‖ℳ (𝑞𝒳 ′ − 𝑓 𝑝𝜇′)‖2

2 ≤ 𝜆2 · ‖𝑞𝒳 ′ − 𝑓 𝑝𝜇′‖2
2. (3.27)

The claim follows by noting the orthogonality property

⟨𝑞𝒳 ′ − 𝑓 𝑝𝜇′ , 𝑝𝜇′⟩ =
∑︁
𝑥′
𝜇(𝑥′)𝑓(𝑥′)− 𝑓 = 0. (3.28)

3.3 Fortification framework

This section introduces the fortification framework. We define the notion of analytically

fortified games and recall our main parallel repetition and fortification theorems. We end by

a discussion of the parameters of the resulting gap amplification results.

3.3.1 Analytical fortification

We distinguish between two variants of the notion of fortified games which we call weakly

fortified games and strongly fortified games. Although the difference between the two may

seem minor, this difference is in fact quite important in the quantum case.

Definition 3.21 (Fortified games). Let 𝜀, 𝛿 ∈ [0, 1]. A concatenated game 𝐺′ = (𝑀 ∘𝐺 ∘ 𝑃 )

is called weakly (𝜀, 𝛿)- fortified against classical substragies if for any substrategy 𝑓, 𝑔 we have

val(𝐺′, 𝑓, 𝑔) ≤ (val(𝐺) + 𝜀) · E
(𝑥,𝑦)∼𝜇

𝑓(𝑥) 𝑔(𝑦) + 𝛿. (3.29)

Similarly, we define 𝐺′ to be weakly (𝜀, 𝛿)-fortified against entangled substrategies if for any

substrategy {𝐴𝑎′
𝑥′}, {𝐵𝑏′

𝑦′} we have

Val*(𝐺′, {𝐴𝑎′

𝑥′}, {𝐵𝑏′

𝑦′}) ≤ (Val*(𝐺) + 𝜀) · E
(𝑥,𝑦)∼𝜇

⟨𝜓|𝐴𝑥 ⊗𝐵𝑦|𝜓⟩+ 𝛿. (3.30)

If furthermore val(𝐺) (resp. Val*(𝐺)) can be replaced by val(𝐺′), (resp. Val*(𝐺′)) in
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the above then the game is called “strongly fortified" against classical (resp. quantum)

substrategies.

Note that our main results, Theorems 3.2 and 3.3, show how any game can be (weakly)

fortified by concatenating it with good-enough spectral expanders.

Two remarks regarding the above definition are in order:

∙ Using (3.13), we see that strong fortification implies weak fortification, as expected

from the terminaology.

∙ From (3.14) it follows that the two notions in fact coincide in the case of classical

fortification, but this is no longer the case for quantum fortification.

Our notion of fortified games and that of [48, 11] are closely related. Essentially, in

Definition 3.21 we have replaced the the condition for all 𝛿-large rectangles in (3.1) with a

smoother condition. In terms of a precise relation, we can show the following.

Claim 3.22. Every (𝜀, 𝜀𝛿) strongly fortified game is also (2𝜀, 𝛿) combinatorially fortified.

Proof. Consider a subgame given by 𝑆 ⊆ 𝒳 , 𝑇 ⊆ 𝒴 in 𝐺. To every strategy (𝑝, 𝑞) for 𝐺𝑆×𝑇 ,

i.e., 𝑝 : 𝑆 → 𝒜, 𝑞 : 𝑇 → ℬ, we can associate a natural substrategy (𝑓, 𝑔) by

𝑓(𝑥, 𝑎) =

⎧⎪⎪⎨⎪⎪⎩
1 if 𝑥 ∈ 𝑆 ∧ 𝑝(𝑥) = 𝑎,

0 otherwise
, 𝑔(𝑦, 𝑏) =

⎧⎪⎪⎨⎪⎪⎩
1 if 𝑦 ∈ 𝑇 ∧ 𝑞(𝑦) = 𝑏,

0 otherwise
.

(3.31)

Then one can easily see

val(𝐺, 𝑓, 𝑔) = val(𝐺𝑆×𝑇 , 𝑝, 𝑞) · 𝜇(𝑆 × 𝑇 ).5 (3.32)

Now assuming that rectangle 𝑆 × 𝑇 is 𝛿-large, i.e. 𝜇(𝑆 × 𝑇 ) ≥ 𝛿, and since 𝐺 is fortified

against classical substrategies, we have

val(𝐺𝑆×𝑇 , 𝑝, 𝑞) = val(𝐺, 𝑓, 𝑔)
𝜇(𝑆 × 𝑇 ) (3.33)

5The term 𝜇(𝑆 × 𝑇 ) = E(𝑥,𝑦)∼𝜇 𝑓(𝑥)𝑔(𝑦) is a natural scaling parameter playing an important role in our
discussion as a measure of the “largeness" of a subgame or a substrategy.
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≤ (val(𝐺) + 𝜀) · E(𝑥,𝑦)∼𝜇 𝑓(𝑥)𝑔(𝑦)
𝜇(𝑆 × 𝑇 ) + 𝛿𝜀

𝜇(𝑆 × 𝑇 ) (3.34)

≤ val(𝐺) + 2𝜀 (3.35)

where in the second inequality we used 𝜇(𝑆 × 𝑇 ) = E(𝑥,𝑦)∼𝜇 𝑓(𝑥)𝑔(𝑦).

We note that in Lemma 3.22, the reverse implication does not hold and the notion of

analytically fortified game is strictly stronger. In what follows, in the rare occasion when we

call a game fortified (without specifying weak or strong) we mean strongly fortified.

3.3.2 Parallel repetition of fortified games

Using the definition of fortified games, it is straightforward to prove the following parallel

repetition theorem.

Theorem 3.23 (Basic parallel repetition). Let 𝐺′2 be a (𝜀, 𝛿)-fortified game against classical

substrategies. Then for any game 𝐺′1 we have

val(𝐺′1 ⊗𝐺′2) ≤ (val(𝐺′2) + 𝜀) · val(𝐺′1) + 𝛿 · |Σ𝐺′
1
|, (3.36)

where Σ𝐺′
1

is the total answer alphabet size (i.e. the product of Alice and Bob’s alphabets) of

𝐺′1.

We prove this theorem in Section 3.4 by adapting the proof of the analogous theorems

in [48, 11] to the analytic setting. Unfortunately, while this theorem exemplifies the main

idea behind our results, it is not directly useful for applications. The reason for this is that

the fortification procedure 𝐺→ 𝐺′ via concatenation induces a large blow-up in the alphabet

size, |Σ𝐺′ | ≈ |Σ𝐺|𝐷, where 𝐷 = 1
𝜀
√
𝛿

is the degree of the expander graph chosen. As one

iterates the repetition procedure 𝑚 times, the blow-up due to the additive term in (3.36) will

be of order 𝛿|Σ𝐺′ |𝑚−1. But typically |Σ𝐺′ |𝑚−1 ≫ |Σ𝐺|(𝑚−1)/
√
𝛿, leading to a term larger than

1 and rendering the theorem useless.

We resolve this problem by proving an improved repetition theorem which exploits the

fact that 𝐺′ takes the form of a concatenated game, whose inner game 𝐺 has a much smaller

alphabet.
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Theorem 3.24. Let 𝐺′ be a concatenated game, with inner game 𝐺, that is (𝜀, 𝛿)-weakly

fortified against classical substrategies. If 𝛿 · (𝑚− 1) · |Σ𝐺|𝑚−1 ≤ 𝜂 then

val(𝐺′⊗𝑚) ≤ (val(𝐺) + 𝜀)𝑚 + 𝜂. (3.37)

Similarly, if 𝐺′ is (𝜀, 𝛿) weakly-fortified against entangled substrategies and 𝛿·(𝑚−1)·|Σ𝐺|𝑚−1 ≤

𝜂 then

Val*(𝐺′⊗𝑚) ≤ (Val*(𝐺) + 𝜀)𝑚 + 𝜂. (3.38)

The main advantage of Theorem 3.24 compared to Theorem 3.23 is in the additive error,

which is now is in terms |Σ𝐺| rather than |Σ𝐺′|. What is important here is that the size of

|Σ𝐺| is independent of the fortification parameters (𝜀, 𝛿) whereas |Σ𝐺′| grows exponentially

as 𝛿 decreases. Let us also note that Theorem 3.24 is quite general, and in particular applies

to the multiplayer case.

3.3.3 Gap amplification

Having stated our main parallel repetition, fortification, and biregularization theorems, all

the main components of gap amplification are finally in place. Indeed, using val(𝐺) = val(𝐺′)

Theorem 3.24 implies our final gap amplification for the classical value. This matches the

parameters of main results of [48, 11] and extends it to more general settings.

Since quantumly we could have Val*(𝐺′) < Val*(𝐺), from (3.38) we cannot obtain

Val*(𝐺′⊗𝑚) ≤ (Val*(𝐺′) + 𝜀)𝑚 + 𝜂. (3.39)

However, Theorem 3.3 and Theorem 3.24 are still sufficient to prove a gap amplification

theorem for the case where the completeness holds against classical players and the soundness

against the quantum ones.6 To obtain a fully quantum gap amplification however, we need

to appeal to the notion of ordered fortification which, as we discussed, is a entangled-value

preserving variant of the ordinary fortification.

6E.g. as was the case in [38, 60].
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Theorem (Theorem 3.5 restated). Let 𝐺 be a game and 𝑀 and 𝑃 be two bipartite graphs as

above. Let 𝐺′𝑂𝐹 be constructed from 𝐺 and 𝐺′ = (𝑀 ∘𝐺 ∘ 𝑃 ) as in Definition 3.4. Then, we

have

Val*(𝐺′𝑂𝐹 ) = Val*(𝐺).

Furthermore if 𝑀 and 𝑃 are 𝜆-spectral expanders and 𝜆 ≤ 𝜀2𝛿
56 , then 𝐺′𝑂𝐹 is also (𝜀, 𝛿) weakly

fortified.

We stress that 𝐺′𝑂𝐹 constructed above is itself a concatenated game with the inner game

𝐺⊕𝑙, disjoint union of 𝑙 = poly( 1
𝜀2𝛿

) copies of 𝐺. This means the inner alphabet size of 𝐺′𝑂𝐹
is precisely the same as 𝐺’s, and therefore there is fortunately no issue in terms of alphabet

blow-up for applying Theorem 3.24 to 𝐺′𝑂𝐹 . So using 𝐺′𝑂𝐹 instead of 𝐺′ in Theorem 3.24, we

can finally prove the analogue of (3.39) for 𝐺′𝑂𝐹 .

3.3.4 Parameters of gap amplification

We can now discuss the parameters of the gap amplification corollaries. As in [48, 11], the

parameters are typically very good in terms of question sizes but much worse in terms of

alphabet size. Here, we mostly focus our discussion to gap amplification in the classical

setting as the calculations in the quantum setting are similar.

To understand the parameters, we need to only consider the soundness case. Suppose we

are given a game 𝐺 with guarantee val(𝐺) ≤ 1− 𝜏 and a target soundness value 𝛽. We choose

𝜀 = 𝜏/2 and 𝑚 such that (val(𝐺) + 𝜀)𝑚 ≤ 𝛽/2. Hence, we have 𝑚 = log(2/𝛽)
log(1−𝜏/2) ≤

2 log(2/𝛽)
𝜏

.

We want

val(𝐺′⊗𝑚) ≤ (val(𝐺) + 𝜀)𝑚 + 𝛿 · (𝑚− 1)|Σ𝐺|𝑚−1 ≤ 𝛽. (3.40)

Hence, we just need to ensure 𝛿 · |Σ𝐺|𝑚−1 ≤ 𝛽/2. So we have 𝛿 = 𝛽
(𝑚−1)·|Σ𝐺|𝑚−1 .

So what does the above mean in terms of the size of the final output of gap amplification

𝐺′⊗𝑚. The question size is |𝒳 |𝑚 and |𝒴|𝑚 (since we have |𝒳 ′| = |𝒳 | and |𝒴 ′| = |𝒴|). Note

that 𝑚 is essentially as small as we can hope for because even given a perfect parallel repetition

theorem, we had to take 𝑚 ≈ log(1/𝛽)
𝜏

. Hence, the construction is essentially optimal in terms

of question sizes.
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For the alphabet size, the situation is much worse. We have |Σ𝐺′ | = |Σ𝐺|𝐷 where

𝐷 = 𝑂(poly log(1/𝜀2𝛿)
𝜀2𝛿

). This means (up to dominant factors) that |Σ𝐺′⊗𝑚 | = |Σ𝐺|
𝑚2|Σ𝐺|𝑚−1

𝛽

which means that the alphabet is exponentially worse than basic parallel repetition which

results in |Σ𝐺|𝑚. Note that however in typical settings where |Σ𝐺| is constant and 𝛽 a small

constant (or inverse logarithmic in size of 𝐺), this exponentially worse behavior of alphabet

size does not cause a significant problem.

Next, let us consider the setting where the completeness holds for classical players and

soundness against entangled players. In this case, we can just use Theorem 3.3 instead of

Theorem 3.2, and hence all the calculations are precisely the same with 𝜀 and 𝛿 replaced with

their squares.

Lastly, in the fully quantum case we need to use Theorem 3.5. In this case, 𝑚, 𝜀, 𝛿 are

chosen in precisely the same way. Alphabet size is also exactly the same as 𝐺′𝑂𝐹 has the

same alphabet size as 𝐺′. The only difference is that the question sizes in 𝐺′𝑂𝐹 are slightly

larger than 𝐺′: we have |𝒳 ′| = |𝒳 | · poly( |Σ𝐺|𝑚
𝛽

) and |𝒴 ′| = |𝒴| · poly( |Σ𝐺|𝑚
𝛽

). This is however

arguably a minor blow-up since we typically expect that |Σ𝐺|/𝛽 to be much smaller than

size(𝐺) = |𝒳 | · |𝒴|.

3.4 Parallel repetition theorems

In this section we prove our main parallel repetition theorem.

Theorem (Theorem 3.24 restated). Let 𝐺′ be a concatenated game (𝜀, 𝛿)-weakly fortified

against classical substrategies with inner game 𝐺. If 𝛿 · (𝑚− 1) · |Σ𝐺|𝑚−1 ≤ 𝜂 then

val(𝐺′⊗𝑚) ≤ (val(𝐺) + 𝜀)𝑚 + 𝜂. (3.41)

Similarly, if 𝐺′ is (𝜀, 𝛿) weakly-fortified against entangled substrategies and 𝛿·(𝑚−1)·|Σ𝐺|𝑚−1 ≤

𝜂 then

Val*(𝐺′⊗𝑚) ≤ (Val*(𝐺) + 𝜀)𝑚 + 𝜂. (3.42)

The proof follows directly from the following proposition.
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Proposition 3.25. Let {𝐺′𝑖}𝑡𝑖=1 be a collection of concatenated games with inner games

{𝐺𝑖}𝑡𝑖=1. Suppose that 𝐺′𝑡 is (𝜀, 𝛿) weakly fortified against classical substrategies. Then,

val(𝐺′1 ⊗𝐺′2 ⊗ . . .⊗𝐺′𝑡) ≤ (val(𝐺𝑡) + 𝜀) · val(𝐺′1 ⊗𝐺′2 ⊗ . . .⊗𝐺′𝑡−1) + 𝛿 ·
𝑡−1∏︁
𝑖=1
|Σ𝐺𝑖
|. (3.43)

Similarly, if 𝐺′𝑡 is (𝜀, 𝛿) weakly fortified against quantum substrategies, then

Val*(𝐺′1⊗𝐺′2⊗ . . .⊗𝐺′𝑡) ≤ (Val*(𝐺𝑡)+𝜀) ·Val*(𝐺′1⊗𝐺′2⊗ . . .⊗𝐺′𝑡−1)+𝛿 ·
𝑡−1∏︁
𝑖=1
|Σ𝐺𝑖
|. (3.44)

The key to proving Proposition 3.25 is to work with the induced strategies. This allows

us to get an additive error depending just on the alphabet size of the inner game. In the

proof, we use the usual notation where a strategy missing an (answer) argument indicates

summation over that variable. For example,

𝑓(𝑥1, 𝑎1, . . . , 𝑥𝑡−1, 𝑎𝑡−1, 𝑥𝑡) =
∑︁
𝑎𝑡

𝑓(𝑥1, 𝑎1, . . . , 𝑥𝑡−1, 𝑎𝑡−1, 𝑥𝑡, 𝑎𝑡).

Proof. We only prove (3.43) as the proof of (3.44) follows the same structure. Also for

simplicity, we focus on the case of two-player games as the proof of the multiplayer case is a

straightforward extension.

Consider any strategies 𝑓 : 𝒳 ′1×𝒜′1× . . .×𝒳 ′𝑡 ×𝒜′𝑡 → [0, 1], 𝑔 : 𝒴 ′1×ℬ′1× . . .×𝒴 ′𝑡×ℬ′𝑡 →

[0, 1]. To clarify notation we will denote tuples (𝑧1, . . . , 𝑧𝑡−1) as z<𝑡. With this notation,

val(𝐺′1 ⊗ . . .⊗𝐺′𝑡, 𝑓, 𝑔) is precisely

E
(x≤𝑡,y≤𝑡)

E
x′≤𝑡

E
y′

≤𝑡

∑︁
a′≤𝑡,b′≤𝑡

𝑡∏︁
𝑖=1

𝑉 (𝑎′𝑖(𝑥𝑖), 𝑏′𝑖(𝑦𝑖), 𝑥𝑖, 𝑦𝑖) 𝑓(x′≤𝑡, a′≤𝑡) · 𝑔(y′≤𝑡,b′≤𝑡), (3.45)

where the expectations are according to (𝑥𝑖, 𝑦𝑖) ∼ 𝜇𝑖 and 𝑥′𝑖 ∼ 𝑁(𝑥𝑖) and 𝑦′𝑖 ∼ 𝑁(𝑦𝑖) for all

𝑖 = 1, . . . , 𝑡. As usual let

𝑓(x<𝑡, a<𝑡, 𝑥′𝑡, 𝑎′𝑡) = E
x′

<𝑡∼𝑁(x<𝑡)

∑︁
𝑎′

𝑖(𝑥𝑖)=𝑎𝑖, 𝑖<𝑡

𝑓(x′<𝑡, a′<𝑡, 𝑥′𝑡, 𝑎′𝑡). (3.46)
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Using this notation, we can rewrite (3.45) as

E
(x<𝑡,y<𝑡)

∑︁
a<𝑡,b<𝑡

𝑡−1∏︁
𝑖=1

𝑉 (𝑎𝑖, 𝑏𝑖, 𝑥𝑖, 𝑦𝑖)𝑆(x<𝑡,y<𝑡, a<𝑡,b<𝑡), (3.47)

where 𝑆(x<𝑡,y<𝑡, a<𝑡,b<𝑡) is given by

E
(𝑥𝑡,𝑦𝑡)

E
𝑥′

𝑡

E
𝑦′

𝑡

∑︁
𝑎′

𝑡,𝑏
′
𝑡

𝑉 (𝑎′𝑡(𝑥𝑡), 𝑏′𝑡(𝑦𝑡), 𝑥𝑡, 𝑦𝑡) 𝑓(x<𝑡, a<𝑡, 𝑥′𝑡, 𝑎′𝑡) · 𝑔(y<𝑡,b<𝑡, 𝑦′𝑡, 𝑏′𝑡). (3.48)

Consider the following substrategy 𝐺′𝑡: fix the first 2(𝑡 − 1) arguments of 𝑓 to (x<𝑡, a<𝑡)

and the first 2(𝑡− 1) arguments of 𝑔 to (y<𝑡,b<𝑡). Then (3.48) is precisely the value of this

substrategy in 𝐺′𝑡. Since 𝐺′𝑡 is (𝜀, 𝛿) weakly fortified, it follows that

(3.48) ≤ (val(𝐺𝑡) + 𝜀) · E
(𝑥𝑡,𝑦𝑡)

𝑓(x<𝑡, a<𝑡, 𝑥𝑡) · 𝑔(y<𝑡,b<𝑡, 𝑦𝑡) + 𝛿. (3.49)

Plugging this expression back into (3.47), val(𝐺′1 ⊗ . . .⊗𝐺′𝑡, 𝑓, 𝑔) is bounded by

(val(𝐺𝑡) + 𝜀) E
(x≤𝑡,y≤𝑡)

∑︁
a<𝑡,b<𝑡

𝑡−1∏︁
𝑖=1

𝑉 (𝑎𝑖, 𝑏𝑖, 𝑥𝑖, 𝑦𝑖) 𝑓(x<𝑡, a<𝑡, 𝑥𝑡) · 𝑔(y<𝑡,b<𝑡, 𝑦𝑡) + 𝛿 ·
𝑡−1∏︁
𝑖=1
|Σ𝐺𝑖
|.

To conclude we observe that

E
(x≤𝑡,y≤𝑡)

∑︁
a<𝑡,b<𝑡

𝑡−1∏︁
𝑖=1

𝑉 (𝑎𝑖, 𝑏𝑖, 𝑥𝑖, 𝑦𝑖) 𝑓(x<𝑡, a<𝑡, 𝑥𝑡) · 𝑔(y<𝑡,b<𝑡, 𝑦𝑡) (3.50)

is at most val(𝐺′1⊗ . . .⊗𝐺′𝑡−1), as for any fixed (𝑥𝑡, 𝑦𝑡) the functions 𝑓(·, 𝑥𝑡) : 𝒳 ′1×𝒜′1× . . .×

𝒳 ′𝑡−1 ×𝒜′𝑡−1 → [0, 1] and 𝑔(·, 𝑦𝑡) : 𝒴 ′1 × ℬ′1 × . . .× 𝒴 ′𝑡−1 × ℬ′𝑡−1 → [0, 1] are valid strategies in

𝐺′1 ⊗ . . .⊗𝐺′𝑡−1.

Remark 3.26. Theorem 3.23 immediately follows from Proposition 3.25 by taking 𝑡 = 2

and considering the trivial concatenation 𝐺′1 = 𝐺1, 𝐺′2 = 𝐺2.

Theorem 3.24 follows easily.

Proof of Theorem 3.24. We prove (3.41) as the proof of (3.42) is similar.
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The proof is by induction on 𝑚. The case 𝑚 = 1 is clear. By the induction hypothesis we

have

val(𝐺′⊗(𝑚−1)) ≤ (val(𝐺) + 𝜀)𝑚−1 + 𝛿 · (𝑚− 2)|Σ𝐺|𝑚−2.

Note that we can assume val(𝐺)+𝜀 < 1 otherwise (3.41) holds trivially. Applying Proposition

3.25 we see that

val(𝐺′⊗𝑚) ≤ (val(𝐺) + 𝜀) · val(𝐺′⊗(𝑚−1)) + 𝛿 · |Σ𝐺|𝑚−1

≤ (val(𝐺) + 𝜀)𝑚 + 𝛿 · (val(𝐺) + 𝜀) · (𝑚− 2)|Σ𝐺|𝑚−2 + 𝛿 · |Σ𝐺|𝑚−1

≤ (val(𝐺) + 𝜀)𝑚 + 𝛿 · (𝑚− 1) · |Σ𝐺|𝑚−1.

3.5 Classical fortification

In this section we prove our main theorem regarding the fortification of classical games.

Beside providing a short and self-contained treatment of the main result of [48, 11], it serves

as preparation for the analysis of Section 3.7.

Theorem (Theorem 3.2 restated). Let 𝐺 be a biregular game, 𝑀 and 𝑃 two bipartite 𝜆-

spectral expanders. If 𝜆 ≤ 𝜀
2

√︁
𝛿
2 , then the concatenated game 𝐺′ = (𝑀 ∘𝐺 ∘𝑃 ) is (𝜀, 𝛿) weakly

fortified against classical substrategies.

We note that it follows from [11, Appendix C] that the dependence 𝜆 and 𝛿 in Theorem

3.2 is up to constant factors optimal. On the other hand, the tightness of dependence of 𝜀

and 𝛿 does not seem to follow from [11] lower bound (however, 𝛿 is by far the more significant

of the two parameters).

3.5.1 Proof of Theorem 3.2

We start with a simple claim whose proof we will defer to the end of the subsection.

Claim 3.27. Let 𝑀 = (𝒳 ′ × 𝒳 , 𝐸) and 𝑁 = (𝒴 ′ × 𝒴 , 𝐹 ) be two biregular bipartite graphs

that are 𝜆-spectral expanders. Let 𝜇 be a distribution on 𝒳 × 𝒴 such that both marginals of
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𝜇 are uniform. Let 𝑓 : 𝒳 ′ → R and 𝑔 : 𝒴 ′ → R be any functions. Define 𝑓 : 𝒳 → R and

𝑔 : 𝒴 → R as the induced functions, given by 𝑓 : 𝑥 ↦→ E𝑥′∼𝑁(𝑥) 𝑓(𝑥′), 𝑔 : 𝑦 ↦→ E𝑦′∼𝑁(𝑦) 𝑔(𝑦′)

respectively. Then

E
(𝑥1,𝑦1)∼𝜇

⃒⃒⃒⃒
𝑓(𝑥1)𝑔(𝑦1)− E

(𝑥2,𝑦2)∼𝜇
𝑓(𝑥2)𝑔(𝑦2)

⃒⃒⃒⃒
≤ 2
√

2𝜆
(︂

E
𝑥′∼𝒳 ′

|𝑓(𝑥′)|2
)︂1/2(︂

E
𝑦′∼𝒴 ′

|𝑔(𝑦′)|2
)︂1/2

and

⃒⃒⃒⃒
E

𝑥1∼𝒳
𝑓(𝑥) E

𝑦1∼𝒴
𝑔(𝑦1)− E

(𝑥2,𝑦2)∼𝜇
𝑓(𝑥2)𝑔(𝑦2)

⃒⃒⃒⃒
≤ 2𝜆2

(︂
E

𝑥′∼𝒳 ′
|𝑓(𝑥′)|2

)︂1/2(︂
E

𝑦′∼𝒴 ′
|𝑔(𝑦′)|2

)︂1/2
.

We prove a slightly stronger statement which implies Theorem 3.2. Let 𝑓, 𝑔 be any

substrategies for 𝐺, and let 𝛾 = E(𝑥,𝑦)∼𝜇 𝑓(𝑥)𝑔(𝑦). We claim that

val(𝐺′, 𝑓, 𝑔) ≤ val(𝐺)𝛾 + 2
√

2𝜆√𝛾 + 4𝜆2. (3.51)

To deduce the bound claimed in Theorem 3.2 from (3.51) we distinguish two cases. Either

𝛾 ≤ 𝛿, in which case using the trivial estimate val(𝐺′, 𝑓, 𝑔) ≤ 𝛾 the bound immediately

follows. Or 𝛾 > 𝛿, in which case

val(𝐺)𝛾 + 2
√

2𝜆√𝛾 + 4𝜆2 ≤ 𝛾(val(𝐺) + 2
√

2𝜆𝛿−1/2) + 4𝜆2

≤ 𝛾(val(𝐺) + 𝜀) + 𝛿

given the relation between 𝜀, 𝛿 and 𝜆 expressed in the theorem.

It remains to prove (3.51). Fix substrategies 𝑓 and 𝑔. We have

val(𝐺′, 𝑓, 𝑔) = E
(𝑥,𝑦)∼𝜇

∑︁
𝑉 (𝑎,𝑏,𝑥,𝑦)=1

𝑓(𝑥, 𝑎) · 𝑔(𝑦, 𝑏)

= E
(𝑥,𝑦)∼𝜇

𝑓(𝑥)𝑔(𝑦)
∑︁

𝑉 (𝑎,𝑏,𝑥,𝑦)=1

𝑓(𝑥, 𝑎)
𝑓(𝑥) ·

𝑔(𝑦, 𝑏)
𝑔(𝑦) ,
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where we adopt the convention that 0/0 = 0. Using the triangle inequality,

val(𝐺′, 𝑓, 𝑔) ≤ 𝛾 E
(𝑥,𝑦)∼𝜇

∑︁
𝑉 (𝑎,𝑏,𝑥,𝑦)=1

𝑓(𝑥, 𝑎)
𝑓(𝑥) ·

𝑔(𝑦, 𝑏)
𝑔(𝑦) + E

(𝑥,𝑦)∼𝜇

⃒⃒⃒
𝑓(𝑥)𝑔(𝑦)− 𝛾

⃒⃒⃒

≤ 𝛾val(𝐺) + E
(𝑥,𝑦)∼𝜇

⃒⃒⃒
𝑓(𝑥)𝑔(𝑦)− 𝛾

⃒⃒⃒
, (3.52)

where the second inequality follows since (𝑥, 𝑎) ↦→ 𝑓(𝑥, 𝑎)/𝑓(𝑥) and (𝑦, 𝑏) ↦→ 𝑔(𝑦, 𝑏)/𝑔(𝑦) form

a valid pair of strategies for 𝐺. It remains to estimate the second term above. Applying the

first inequality in Claim 3.27,

E
(𝑥,𝑦)∼𝜇

⃒⃒⃒
𝑓(𝑥)𝑔(𝑦)− 𝛾

⃒⃒⃒
≤ 2
√

2𝜆
(︂

E
𝑥′∼𝒳 ′

|𝑓(𝑥′)|2
)︂1/2(︂

E
𝑦′∼𝒴 ′

|𝑔(𝑦′)|2
)︂1/2

≤ 2
√

2𝜆
(︂

E
𝑥′∼𝒳 ′

𝑓(𝑥′) E
𝑦′∼𝒴 ′

𝑔(𝑦′)
)︂1/2

≤ 2
√

2𝜆
√︁
𝛾 + 2𝜆2

≤ 2
√

2𝜆(√𝛾 +
√

2𝜆)

= 2
√

2𝜆√𝛾 + 4𝜆2,

where in the second inequality we used 0 ≤ 𝑓(𝑥′), 𝑔(𝑦′) ≤ 1 for all 𝑥′, 𝑦′ and the third uses

the second inequality in Claim 3.27. Together with (3.52) this proves (3.51).

Finally, we prove Claim 3.27.

Proof of Claim 3.27. For the first inequality, write

E
(𝑥1,𝑦1)∼𝜇

⃒⃒⃒
𝑓(𝑥1)𝑔(𝑦1)− E

(𝑥2,𝑦2)∼𝜇
𝑓(𝑥2)𝑔(𝑦2)

⃒⃒⃒
≤ E

(𝑥1,𝑦1),(𝑥2,𝑦2)∼𝜇

(︁
|𝑓(𝑥1)− 𝑓(𝑥2)||𝑔(𝑦1)|+ |𝑓(𝑥2)||𝑔(𝑦1)− 𝑔(𝑦2)|

)︁
≤
(︂

E
𝑥1,𝑥2∼𝒳

|𝑓(𝑥1)− 𝑓(𝑥2)|2
)︂1/2(︂

E
𝑦1∼𝒴
|𝑔(𝑦1)|2

)︂1/2

+
(︂

E
𝑥2∼𝒳

|𝑓(𝑥2)|2
)︂1/2(︂

E
𝑦1,𝑦2∼𝒴

|𝑔(𝑦1)− 𝑔(𝑦2)|2
)︂1/2

≤ 𝜆
(︂

E
𝑥′

1,𝑥
′
2∼𝒳 ′
|𝑓(𝑥′1)− 𝑓(𝑥′2)|2

)︂1/2(︂
E

𝑦′
1∼𝒴 ′
|𝑔(𝑦′1)|2

)︂1/2

+ 𝜆
(︂

E
𝑥′

2∼𝒳 ′
|𝑓(𝑥′2)|2

)︂1/2(︂
E

𝑦′
1,𝑦

′
2∼𝒴 ′
|𝑔(𝑦′1)− 𝑔(𝑦′2)|2

)︂1/2
,
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where the last inequality uses Proposition 3.20. Now note that E𝑥′
1,𝑥

′
2∼𝒳 ′ |𝑓(𝑥′1)− 𝑓(𝑥′2)|2 ≤

2E𝑥′∼𝒳 ′ |𝑓(𝑥′)|2. Applying a similar bound for 𝑔 gives us the first inequality. For the second,

write

⃒⃒⃒
E

(𝑥2,𝑦2)∼𝜇
𝑓(𝑥2)𝑔(𝑦2) E

𝑥1∼𝒳
𝑓(𝑥) E

𝑦1∼𝒴
𝑔(𝑦1)

⃒⃒⃒
=
⃒⃒⃒

E
(𝑥2,𝑦2)∼𝜇,𝑥1∼𝒳 ,𝑦1∼𝒴

(𝑓(𝑥1)− 𝑓(𝑥2))(𝑔(𝑦1)− 𝑔(𝑦2))
⃒⃒⃒

≤
(︂

E
𝑥1,𝑥2∼𝒳

(𝑓(𝑥1)− 𝑓(𝑥2))2
)︂1/2(︂

E
𝑦1,𝑦2∼𝒴

(𝑔(𝑦1)− 𝑔(𝑦2))2
)︂1/2

≤ 𝜆2
(︂

E
𝑥′

1,𝑥
′
2∼𝒳 ′

(𝑓(𝑥1)− 𝑓(𝑥2))2
)︂1/2(︂

E
𝑦′

1,𝑦
′
2∼𝒴 ′

(𝑔(𝑦′1)− 𝑔(𝑦′2))2
)︂1/2

≤ 2𝜆2
(︂

E
𝑥′∼𝒳 ′

|𝑓(𝑥′)|2
)︂1/2(︂

E
𝑦′∼𝒴 ′

|𝑔(𝑦′)|2
)︂1/2

.

3.5.2 A simple multiplayer fortification

The following is a simple fortification theorem for 𝑘-player games. Since Theorem 3.24 applies

equally well to the multiplayer setting, we get a hardness amplification result for classical

multiplayer games.

Theorem 3.28. Let 𝐺 be a 𝑘-player game. Suppose 𝐺′ is given by composing each of the 𝑘

sides of 𝐺 by a 𝜆-spectral expander where 𝜆 ≤ 2𝛿/𝑘. Then 𝐺′ is a (0, 𝛿) fortified game.7

Proof. Consider a classical substrategy for 𝐺′ given by 𝑓𝑖 : 𝒳 ′𝑖 ×𝒜′𝑖 → R+ for 𝑖 = 1, 2, . . . , 𝑘.

As usual, denote 𝑓𝑖 : 𝒳𝑖 ×𝒜𝑖 → R+ the projection of 𝑓𝑖 to the inner game 𝐺. By definition,

val(𝐺, {𝑓𝑖}𝑘𝑖=1) = E
(𝑥1,...,𝑥𝑘)

∑︁
𝑎1,𝑎2,...,𝑎𝑘

𝑉 (𝑎1, . . . , 𝑎𝑘, 𝑥1, . . . , 𝑥𝑘) ·𝑓1(𝑥1, 𝑎1) ·𝑓𝑥(𝑥2, 𝑎2) . . . 𝑓𝑘(𝑥𝑘, 𝑎𝑘).

We can rewrite the above as

E
(𝑥1,...,𝑥𝑘)

𝑘∏︁
𝑖=1

𝑓𝑖(𝑥𝑖)
∑︁

𝑎1,...,𝑎𝑘

𝑉 (𝑎1, . . . , 𝑎𝑘, 𝑥1, . . . , 𝑥𝑘) ·
𝑓1(𝑥1, 𝑎1) · 𝑓𝑥(𝑥2, 𝑎2) . . . 𝑓𝑘(𝑥𝑘, 𝑎𝑘)

𝑓(𝑥1) · 𝑓(𝑥2) . . . · 𝑓(𝑥𝑘)
.

7Although there is no 𝜀 dependence in the above, when applied to 2-player games the theorem is still
weaker than Theorem 3.2 because of the worse dependence on 𝛿 – which is the more crucial parameter than 𝜀.
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Let 𝛾 = E(𝑥1,...,𝑥𝑘)
∏︀𝑘
𝑖=1 𝑓𝑖(𝑥𝑖). Applying the triangle inequality,

val(𝐺, {𝑓𝑖}𝑘𝑖=1) ≤ 𝛾 · val(𝐺) + E
(𝑥1,...,𝑥𝑘)

|
𝑘∏︁
𝑖=1

𝑓𝑖(𝑥𝑖)− 𝛾|.

To conclude it will suffice to show the second term above is at most 𝛿. Let 𝑓𝑖 = E𝑥𝑖
𝑓(𝑥𝑖).

Then

E
(𝑥1,...,𝑥𝑘)

⃒⃒⃒⃒
⃒
𝑘∏︁
𝑖=1

𝑓𝑖(𝑥𝑖)− 𝛾
⃒⃒⃒⃒
⃒ ≤ E

𝑥1,...,𝑥𝑘

⃒⃒⃒⃒
⃒
𝑘∏︁
𝑖=1

𝑓𝑖(𝑥𝑖)−
𝑘∏︁
𝑖=1

𝑓𝑖

⃒⃒⃒⃒
⃒+ E

(𝑥1,...,𝑥𝑘)

⃒⃒⃒⃒
⃒
𝑘∏︁
𝑖=1

𝑓𝑖 − 𝛾
⃒⃒⃒⃒
⃒

= E
(𝑥1,...,𝑥𝑘)

⃒⃒⃒⃒
⃒
𝑘∏︁
𝑖=1

𝑓𝑖(𝑥𝑖)−
𝑘∏︁
𝑖=1

𝑓𝑖

⃒⃒⃒⃒
⃒+

⃒⃒⃒⃒
⃒
𝑘∏︁
𝑖=1

𝑓𝑖 − E
𝑥1,...,𝑥𝑘

𝑘∏︁
𝑖=1

𝑓𝑖(𝑥𝑖)
⃒⃒⃒⃒
⃒

≤ 2 · E
(𝑥1,...,𝑥𝑘)

⃒⃒⃒⃒
⃒
𝑘∏︁
𝑖=1

𝑓𝑖(𝑥𝑖)−
𝑘∏︁
𝑖=1

𝑓𝑖

⃒⃒⃒⃒
⃒

≤ 2
𝑘∑︁
𝑖=1

E
𝑥𝑖
|𝑓𝑖(𝑥𝑖)− 𝑓𝑖|,

where the first equality is by definition of 𝛾, the second inequality by convexity of | · |, and

the last follows from

|𝑓1(𝑥1)𝑓2(𝑥2) . . . 𝑓𝑘(𝑥𝑘)−𝑓1𝑓2 . . . 𝑓𝑘| ≤
𝑘∑︁
ℓ=1

⃒⃒⃒⃒
⃒⃒ℓ−1∏︁
𝑖=1

𝑓𝑖(𝑥𝑖) ·
𝑘∏︁
𝑖=ℓ
𝑓𝑖 −

ℓ∏︁
𝑖=1

𝑓𝑖(𝑥𝑖) ·
𝑘∏︁

𝑖=ℓ+1
𝑓𝑖

⃒⃒⃒⃒
⃒⃒ ≤ 𝑘∑︁

𝑖=1
E
𝑥𝑖
|𝑓𝑖(𝑥𝑖)−𝑓𝑖|.

Hence,

E
𝑥1,...,𝑥𝑘

⃒⃒⃒⃒
⃒
𝑘∏︁
𝑖=1

𝑓𝑖(𝑥𝑖)− 𝛾
⃒⃒⃒⃒
⃒ ≤ 2

𝑘∑︁
𝑖=1

(︂
E
𝑥𝑖

(𝑓𝑖(𝑥𝑖)− 𝑓𝑖)2
)︂1/2
≤ 2𝜆

𝑘∑︁
𝑖=1

(︃
E
𝑥′

𝑖

(𝑓𝑖(𝑥′𝑖)− 𝑓𝑖)2
)︃1/2

≤ 2𝜆𝑘.

The desired result follows.

3.6 From strong to weak fortification for entangled games

In this section, we start working toward the problem of fortifying games in the entangled

case. In particular, we show how Theorem 3.5 follows from Theorem 3.3. Let 𝐺 = (𝒳 ×

𝒴 ,𝒜× ℬ, 𝜇, 𝑉 ) be a two-player game.
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Definition 3.29. For a game 𝐺 and integer 𝑙 ∈ N let 𝐺⊕𝑙 denote the disjoint union of 𝑙

copies of 𝐺.

Suppose that 𝑀 and 𝑃 are regular bipartite graphs over 𝒳 ′×𝒳 and 𝒴 ′×𝒴 , respectively.

Suppose further that 𝑀 and 𝑃 are balanced, i.e. |𝒳 ′| = |𝒳 | and |𝒴 ′| = |𝒴|. Let 𝑑𝑀 and

𝑑𝑁 denote the degree of vertices 𝑀 and 𝑃 , respectively. (Note that since the graphs are

balanced and regular, the left and right degrees are the same.)

Following [11], we assume that 𝑀 and 𝑃 are explicit bipartite almost-Ramanujan ex-

panders, as provided e.g. by [12], for which the second-largest singular values 𝜆𝑀 and 𝜆𝑃 of

𝐴𝑀 and 𝐴𝑃 (the normalized adjacency matrices) respectively satisfy

𝜆𝑀 = 𝑂

(︃
poly(log 𝑑𝑀)√

𝑑𝑀

)︃
, 𝜆𝑃 = 𝑂

(︃
poly(log 𝑑𝑃 )√

𝑑𝑃

)︃
. (3.53)

Note that if 𝑑𝑀 , 𝑑𝑃 = ̃︀Ω( 1
𝜀2𝛿

) then Theorem 3.3 implies that 𝐺′ = (𝑀 ∘ 𝐺 ∘ 𝑃 ) is (𝜀, 𝛿)

weakly-fortified. Next we recall the definition of 𝐺′𝑂𝐹 from the introduction.

Ordered fortification. Let 𝐺, 𝑀 , 𝑃 and 𝐺′ = (𝑀 ∘ 𝐺 ∘ 𝑃 ) be as above. let 𝑙 =

max{𝑑𝑀 , 𝑑𝑃}. In 𝐺′𝑂𝐹𝑙
(or simply 𝐺′𝑂𝐹 where 𝑙 = max{𝑑𝑀 , 𝑑𝑃}) the referee samples questions

(𝑥, 𝑦) as in 𝐺 and selects two random neighbors 𝑥′ ∈ 𝒳 ′ and 𝑦′ ∈ 𝒴 ′ of 𝑥 and 𝑦 in 𝑀 and

𝑃 respectively. Then the referee selects two random injective maps 𝑟𝑥′ : 𝑁(𝑥′) → [𝑙] and

𝑠𝑦′ : 𝑁(𝑦′)→ [𝑙] under the condition 𝑟𝑥′(𝑥) = 𝑠𝑦′(𝑦). Alice’s question then is the pair (𝑥′, 𝑟𝑥′)

and Bob’s is the pair (𝑦′, 𝑠𝑦′). Alice outputs an answer tuple 𝑎′ : 𝑁(𝑥′) → 𝒜 and Bob

𝑏′ : 𝑁(𝑦′)→ ℬ. The players win if 𝑉 (𝑎′(𝑥), 𝑏′(𝑦), 𝑥, 𝑦) = 1.

Remark 3.30. Note that 𝐺′𝑂𝐹 has exactly the same answer alphabet size as 𝐺′, the question

sizes |𝒳 ′𝑂𝐹 | and |𝒴 ′𝑂𝐹 | are larger than in 𝐺′. This blow-up can be mitigated as follows. It turns

out that in Definition 3.31 the use of the complete set 𝑆(𝑑,𝑙) is unnecessary. More precisely,

from the proof of the main claim of this section, Claim 3.34 below, it will be clear that the

only condition required is that the permutations be chosen from a pairwise independent

subset of 𝑆(𝑑,𝑙). Selecting the smallest possible such subset lets us reduce the blow-up in the

size of the question sets from a multiplicative 𝐷! down to poly(𝐷) = poly( 1
𝜀2𝛿

). We omit the

details.
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Although it may not be immediately apparent, it is possible to view 𝐺′𝑂𝐹 as a concatenated

game. Let 𝐺⊕𝑙 be as in Definition 3.29. Note that 𝐺⊕𝑙 has exactly the same classical and

entangled value as 𝐺. Let 𝑆(𝑑𝑀 ,𝑙) denote the set of all injective maps from [𝑑𝑀 ]→ [𝑙]. Fix

maps 𝑢𝑥′ : 𝑁(𝑥′)→ [𝑑𝑀 ] and 𝑣𝑦′ : 𝑁(𝑦′)→ [𝑑𝑀 ] ordering the neighborhoods of each 𝑥′, 𝑦′ in

an arbitrary way.

Definition 3.31. Let 𝑀 be a regular bipartite graph over 𝒳 ′ ×𝒳 as above . We define ̃︁𝑀
as a bipartite graph over 𝒳 ′𝑂𝐹 := 𝒳 ′ × 𝑆(𝑑𝑀 ,𝑙) and 𝒳𝑂𝐹 := 𝒳 × [𝑙] where

(𝑥′, 𝜋) ∼�̃� (𝑥, 𝑖) ⇐⇒ 𝜋(𝑢𝑥′(𝑥)) = 𝑖.

We define ̃︀𝑃 from 𝑃 in a similar way.

Note that here 𝜋 ∘ 𝑢𝑥′ exactly corresponds to 𝑟𝑥′ : 𝑁(𝑥′) → [𝑙] map from the original

definition of 𝐺′𝑂𝐹 . Hence, we obtain the following alternative characterization of 𝐺′𝑂𝐹 .

Proposition 3.32. The game 𝐺′𝑂𝐹 constructed above is a concatenated game given by

𝐺′𝑂𝐹 = (̃︁𝑀 ∘𝐺⊕𝑙 ∘ ̃︀𝑃 ).

Next, we show that ordered fortification preserves the entangled value (the classical value

is also preserved but that is not important here).

Proposition 3.33. We have Val*(𝐺′𝑂𝐹 ) = Val*(𝐺).

Proof. In one direction we have Val*(𝐺′𝑂𝐹 ) ≤ Val*(𝐺⊕𝑙) = Val*(𝐺) where we used Proposi-

tions 3.11 and 3.32. For the other direction, consider any entangled strategy (|𝜓⟩, {𝐴𝑎𝑥}, {𝐵𝑏
𝑦})

for 𝐺. We construct a strategy for 𝐺′⊕ that achieves the same value. The provers share 𝑙

copies of the state |𝜓⟩, and each copy is assigned a unique label 𝑖 ∈ [𝑙]. Alice and Bob receive

questions (𝑥′, 𝑟𝑥′) and (𝑦′, 𝑠𝑦′), respectively. For each 𝑥 ∈ 𝑁(𝑥′), Alice applies {𝐴𝑎𝑥} to the

𝑟𝑥′(𝑥)-th copy of |𝜓⟩. Bob applies a similar strategy.

Since by construction the “true questions” 𝑥* and 𝑦* are given the same label, the distri-

bution of answers obtained for 𝑥* and 𝑦* is identical to the distribution of answers obtained

while playing 𝐺 using (|𝜓⟩, {𝐴𝑎𝑥}, {𝐵𝑏
𝑦}), hence achieving the same winning probability.
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The main technical step in reducing Theorem 3.5 to Theorem 3.3 is an analysis of the

singular values of ̃︁𝑀, ̃︁𝑁 in terms of the singular values of 𝑀 and 𝑁 . We prove the following.

Claim 3.34. Let 𝑀 be a bipartite graph over 𝒳 ′ ×𝒳 as above and let 𝜆𝑀 denote the second

largest singular value of 𝑀 . Let �̃� be as in Definition 3.31. Then,

𝜆�̃� ≤ max
{︃
𝜆𝑀 ,

1√
𝑑𝑀 − 1

}︃
.

Since in our case 𝜆𝑀 = 𝑂 (poly(log 𝑑𝑀)/𝑑𝑀), Claim 3.34 implies that 𝜆�̃� satisfies the

same bound. Also note that a similar statement of course applies to 𝑃 and 𝜆𝑃 . So we see

that Theorem 3.3, Propositions 3.33 and 3.32, and Claim 3.34 together imply Theorem 3.5;

it remains to prove the latter.

Proof of Claim 3.34. Recall that by assumption 𝑀 is a regular balanced bipartite graph. Let

𝑑 := 𝑑𝑀 the degree of vertices in 𝑀 . The normalized adjacency matrix of �̃� is given by

𝐴�̃�((𝑥′, 𝜋), (𝑥, 𝑖)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
𝑑
·
√︂

(𝑙−𝑑)!
(𝑙−1)! (𝑥′, 𝜋) ∼�̃� (𝑥, 𝑖)

0 (𝑥′, 𝜋) ̸∼�̃� (𝑥, 𝑖)
. (3.54)

We relate the second largest singular value 𝜆𝑀 of 𝐴𝑀 and the second largest singular value

𝜆�̃� of �̃� by relating the eigenvalues of 𝐵 = 𝐴⊤𝑀𝐴𝑀 and 𝐶 = 𝐴⊤
�̃�
𝐴�̃� . We can explicitly

compute the entries of 𝐵 and 𝐶. For 𝐵,

𝐵(𝑥1, 𝑥2) = |{𝑥
′ ∈ 𝒳 ′ : {𝑥1, 𝑥2} ⊂ 𝑁(𝑥′)}|

𝑑2 , (3.55)

and in particular 𝐵(𝑥, 𝑥) = 1
𝑑

for all 𝑥 ∈ 𝒳 . To compute entries of 𝐶, first note that when

𝑥1 ̸= 𝑥2 and 𝑖 ̸= 𝑗 we have

𝐶((𝑥1, 𝑖), (𝑥2, 𝑗)) = |{𝑥
′ ∈ 𝒳 ′ : {𝑥1, 𝑥2} ⊂ 𝑁(𝑥′)}| · (𝑙 − 𝑑)!

𝑑2(𝑙 − 1)! · (𝑙 − 2)!
(𝑙 − 𝑑)! = 𝐵(𝑥1, 𝑥2)

𝑙 − 1 . (3.56)

Finally, observe the following special cases:

∙ 𝐶((𝑥, 𝑖), (𝑥, 𝑖)) = 1
𝑑
.
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∙ 𝐶((𝑥1, 𝑖), (𝑥2, 𝑖)) = 0 if 𝑥1 ̸= 𝑥2.

∙ 𝐶((𝑥, 𝑖), (𝑥, 𝑗)) = 0 when 𝑖 ̸= 𝑗.

Let ̃︀𝐵 = 𝐵 − 1
𝑑
I and ̃︀𝐶 = 𝐶 − 1

𝑑
I. Let ̃︀𝐽 = 1

𝑙−1(𝐽 − I) be the 𝑙× 𝑙 matrix that is (𝑙− 1)−1

in the off-diagonal entries, and 0 along the diagonal. Then it is easy to see that

̃︀𝐶 = ̃︀𝐵 ⊗ ̃︀𝐽. (3.57)

The matrix ̃︀𝐽 has a single eigenvalue equal to 1 and 𝑙 − 1 eigenvalues equal to − 1
𝑙−1 , and ̃︀𝐵

has a single eigenvalue equal to 1− 1/𝑑 and the remaining are in the range [−1
𝑑
, 𝜆2

𝑀 − 1
𝑑
]. It

follows that the top eigenvalue of 𝐶 = ̃︀𝐶 + 1
𝑑
I is 1 (as expected) and the next one satisfies

𝜆�̃� ≤ max
{︃
𝜆𝑀 ,

√︃
1

𝑑(𝑙 − 1) + 1
𝑑

}︃
,

which is bounded by max
{︁
𝜆𝑀 ,

1√
𝑑−1

}︁
since 𝑙 ≥ 𝑑.

3.7 Weak fortification of entangled games

In this section is to prove the following.

Theorem (Theorem 3.3 restated). Let 𝐺′ = (𝑀 ∘𝐺 ∘𝑃 ) be a concatenated game obtained by

concatenating two sides of a game 𝐺 with some 𝜆-spectral expanders 𝑀 and 𝑃 . If 𝜆 ≤ 𝜀2𝛿
56 ,

then 𝐺′ is (𝜀, 𝛿) weakly-fortified against entangled substrategies.

At a high level, the proof of Theorem 3.3 follows the same outline as the classical proof of

Section 3.5.

Consider a substrategy {𝐴𝑎′
𝑥′}(𝑥′,𝑎′)∈𝒳 ′×𝐴′ , {𝐵𝑏′

𝑦′}(𝑦′,𝑏′)∈𝒴 ′×𝐵′ for𝐺′. Define𝐴𝑥 = E𝑥∼𝑁(𝑥′) 𝐴𝑥′

and 𝐵𝑦 = E𝑦∼𝑁(𝑦′) 𝐵𝑦′ .8 Define 𝐴 = E𝑥∼𝜇𝒳 𝐴𝑥 and 𝐵 = E𝑦∼𝜇𝒴 𝐵𝑦. To prove Theorem 3.3 we

8In what follows, we assume without loss of generality that all 𝐴𝑥′ and 𝐵𝑦′ are invertible. Note that
proving Theorem 3.3 for this subset of substrategies suffices. This follows by a limiting argument because of
the continuity of (3.30) in 𝐴𝑥′ and 𝐵𝑦′ .
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must analyze the following expression:

Val*(𝐺′, {𝐴𝑎′

𝑥′}, {𝐵𝑏′

𝑦′}) = E
(𝑥,𝑦)∼𝜇

E
𝑥′∼𝑁(𝑥),𝑦′∼𝑁(𝑦)

∑︁
𝑎′,𝑏′

𝑉 (𝑎′𝑥′(𝑥), 𝑏′𝑦′(𝑦), 𝑥, 𝑦) · Tr(𝐴𝑎′

𝑥′𝜌1/2𝐵𝑏′

𝑦′𝜌1/2)

= E
(𝑥,𝑦)∼𝜇

∑︁
𝑎,𝑏

𝑉 (𝑎, 𝑏, 𝑥, 𝑦) · Tr(𝐴𝑎𝑥𝜌1/2𝐵𝑏
𝑦𝜌

1/2)

= E
(𝑥,𝑦)∼𝜇

Tr(𝐴𝑥𝜌1/2𝐵𝑦𝜌
1/2) ·

∑︁
𝑉 (𝑎,𝑏,𝑥,𝑦)=1

Tr(𝐴𝑎𝑥𝜌1/2𝐵𝑏
𝑦𝜌

1/2)
Tr(𝐴𝑥𝜌1/2𝐵𝑦𝜌1/2) ,

where 𝐴𝑎𝑥 and 𝐵𝑏
𝑦 are defined as in (3.11), and we use the convention that 0/0 = 0. Our

analysis splits into two cases. First let us consider the small case. This is handled by the

following proposition.

Proposition 3.35. Suppose Tr(𝜌1/2𝐴𝜌1/2𝐵) < 𝛿/2. Then Val*(𝐺′, {𝐴𝑎′
𝑥′}, {𝐵𝑏′

𝑦′}) < 𝛿.

Proof. First of all we have

Val*(𝐺′, {𝐴𝑎′

𝑥′}, {𝐵𝑏′

𝑦′}) = E
𝑥,𝑦

∑︁
𝑉 (𝑎,𝑏,𝑥,𝑦)=1

Tr(𝐴𝑎𝑥𝜌1/2𝐵𝑏
𝑦𝜌

1/2) ≤ E
𝑥,𝑦

Tr(𝐴𝑥𝜌1/2𝐵𝑦𝜌
1/2).

Subtracting Tr(𝐴𝜌1/2𝐵𝜌1/2),

E
𝑥,𝑦

Tr(𝐴𝑥𝜌1/2𝐵𝑦𝜌
1/2)− Tr(𝐴𝜌1/2𝐵𝜌1/2) = E

𝑥,𝑦
Tr((𝐴𝑥 − 𝐴)𝜌1/2(𝐵𝑦 −𝐵)𝜌1/2).

By applying Cauchy-Schwarz to the latter expression and using Claim 2.3 it follows that

Val*(𝐺′, {𝐴𝑎′

𝑥′}, {𝐵𝑏′

𝑦′}) ≤ 𝛿/2 + 𝜆2;

this is smaller than 𝛿 by the choice of 𝜆.

The large case. In this case, the hypothesis of Proposition 3.35 is not satisfied and without

loss of generality we assume that

min
{︁
Tr𝜌(𝐴), Tr𝜌(𝐵)

}︁
≥ Tr(𝐴𝜌1/2𝐵𝜌1/2) ≥ 𝛿/2. (3.58)
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Let

𝛾 := E
(𝑥,𝑦)∼𝜇

Tr(𝐴𝑥𝜌1/2𝐵𝑦𝜌
1/2). (3.59)

By the triangle inequality,

Val*(𝐺′, 𝐴𝑥′ , 𝐵𝑦′) ≤ E
(𝑥,𝑦)∼𝜇

|Tr(𝐴𝑥𝜌1/2𝐵𝑦𝜌
1/2)− 𝛾|+ 𝛾 · E

(𝑥,𝑦)∼𝜇

∑︁
𝑉 (𝑎,𝑏,𝑥,𝑦)=1

Tr(𝐴𝑎𝑥𝜌1/2𝐵𝑏
𝑦𝜌

1/2)
Tr(𝐴𝑥𝜌1/2𝐵𝑦𝜌1/2) .

(3.60)

To bound the first term, we use the triangle inequality to get

|Tr(𝐴𝑥𝜌1/2𝐵𝑦𝜌
1/2)− 𝛾| ≤ |Tr(𝐴𝑥𝜌1/2𝐵𝑦𝜌

1/2 − 𝐴𝜌1/2𝐵𝜌1/2)|+ |Tr(𝐴𝜌1/2𝐵𝜌1/2)− 𝛾|. (3.61)

The first term on the right-hand side of (3.61) can be bounded as

E
(𝑥,𝑦)∼𝜇

|Tr(𝐴𝑥𝜌1/2𝐵𝑦𝜌
1/2 − 𝐴𝜌1/2𝐵𝜌1/2)|

≤ E
(𝑥,𝑦)∼𝜇

|Tr(𝐴𝑥𝜌1/2(𝐵𝑦 −𝐵)𝜌1/2)|+ E
𝑥
|Tr((𝐴𝑥 − 𝐴)𝜌1/2𝐵𝜌1/2)|

≤ E
(𝑥,𝑦)∼𝜇

[︁
Tr𝜌(𝐴2

𝑥)1/2 · Tr𝜌((𝐵𝑦 −𝐵)2)1/2
]︁

+ E
𝑥

[︁
Tr𝜌(𝐵2)1/2 · Tr𝜌((𝐴𝑥 − 𝐴)2)1/2

]︁
≤
(︂
E
𝑥

Tr𝜌(𝐴2
𝑥)
)︂1/2
·
(︂
E
𝑦

Tr𝜌((𝐵𝑦 −𝐵)2)
)︂1/2

+ Tr𝜌(𝐵2)1/2 ·
(︂
E
𝑥

Tr𝜌((𝐴𝑥 − 𝐴)2)
)︂1/2

≤ 4 · 𝜆, (3.62)

where the first inequality is the triangle inequality, the next two follow from Cauchy-Schwarz,

and the last from Claim 2.3 and the trivial bounds Tr𝜌(𝐴2
𝑥),Tr𝜌(𝐵2) ≤ Tr(𝜌) = 1. To bound

the second term on the right-hand side of (3.61) we note that

|Tr(𝐴𝜌1/2𝐵𝜌1/2)− 𝛾| = | E
(𝑥,𝑦)∼𝜇

Tr((𝐴𝑥 − 𝐴)𝜌1/2(𝐵𝑦 −𝐵)𝜌1/2)|

≤ (E
𝑥

Tr𝜌[(𝐴𝑥 − 𝐴)2])1/2 · (E
𝑦

Tr𝜌[(𝐵𝑦 −𝐵)2])1/2,

and the latter is again bounded by 2𝜆 by Claim 2.3. In total we have

E
(𝑥,𝑦)∼𝜇

|Tr(𝐴𝑥𝜌1/2𝐵𝑦𝜌
1/2)− 𝛾| ≤ 4𝜆+ 2𝜆2 ≤ 𝛿, (3.63)
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which provides an upper bound on the first term in the right-hand side of (3.60).

To bound the second term term in the right-hand side of (3.60) we use a strategy inspired

in part by the parallel repetition theorem of [28]. Let 𝑈𝑥, 𝑉𝑦, 𝑈, 𝑉 be a family of unitaries

such that the operators

Λ𝑥 = 𝑈𝑥
√︁
𝐴𝑥𝜌

1/4, Λ = 𝑈
√
𝐴𝜌1/4, Γ𝑦 = 𝑉𝑦

√︁
𝐵𝑦𝜌

1/4, Γ = 𝑉
√
𝐵𝜌1/4 (3.64)

are all positive semidefinite, which is possible by Fact 2.4. Note that this in particular implies

that Λ𝑥 = Λ†𝑥 and hence

Λ2
𝑥 = Λ†𝑥Λ𝑥 = 𝜌1/4

√︁
𝐴𝑥𝑈

†
𝑥𝑈𝑥

√︁
𝐴𝑥𝜌

1/4 = 𝜌1/4𝐴𝑥𝜌
1/4, (3.65)

and similarly Λ2 = 𝜌1/4𝐴𝜌1/4, Γ2 = 𝜌1/4𝐵𝜌1/4 and so on.

Define “rescaled” strategies by

̂︁𝐴𝑎𝑥 = 𝑈𝑥𝐴
−1/2
𝑥 𝐴𝑎𝑥𝐴

−1/2
𝑥 𝑈 †𝑥,

̂︁𝐵𝑏
𝑦 = 𝑉𝑦𝐵

−1/2
𝑦 𝐵𝑏

𝑦𝐵
−1/2
𝑦 𝑉 †𝑦 , (3.66)

where 𝐴−1
𝑥 , 𝐵−1

𝑦 ’s are the pseudo-inverses of 𝐴𝑥, 𝐵𝑦. Note that the operators (3.66) satisfŷ︁𝐴𝑥 = ∑︀
𝑎
̂︁𝐴𝑎𝑥, ̂︁𝐵𝑦 = ∑︀

𝑏
̂︁𝐵𝑏
𝑦 ≤ I as required. Let

𝐾𝑥𝑦 =
𝑈𝑥𝐴

1/2
𝑥 𝜌1/2𝐵1/2

𝑦 𝑉 †𝑦√︁
Tr(𝐴𝑥𝜌1/2𝐵𝑦𝜌1/2)

, 𝐾 = 𝑈𝐴1/2𝜌1/2𝐵1/2𝑉 †√︁
Tr(𝐴𝜌1/2𝐵𝜌1/2)

. (3.67)

By definition of Λ𝑥,Γ𝑦,𝒳 ,𝒴 we see that the above is equivalent to

𝐾𝑥𝑦 = Λ𝑥Γ𝑦√︁
Tr(Λ2

𝑥Γ2
𝑦)
, 𝐾 = ΛΓ√︁

Tr(Λ2Γ2)
. (3.68)

Now note the following identity

Tr(𝐴𝑎𝑥𝜌1/2𝐵𝑏
𝑦𝜌

1/2)
Tr(𝐴𝑥𝜌1/2𝐵𝑦𝜌1/2) = Tr(̂︁𝐴𝑎𝑥𝐾𝑥𝑦

̂︁𝐵𝑏
𝑦𝐾
†
𝑥𝑦). (3.69)
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So to finish the argument it suffices to estimate

E
(𝑥,𝑦)∼𝜇

∑︁
𝑉 (𝑎,𝑏,𝑥,𝑦)=1

Tr(̂︁𝐴𝑎𝑥𝐾𝑥𝑦
̂︁𝐵𝑏
𝑦𝐾
†
𝑥𝑦). (3.70)

To this end note that since Tr(𝐾𝐾†) = 1 it follows from the definition of Val*(𝐺) that

E
(𝑥,𝑦)∼𝜇

∑︁
𝑉 (𝑎,𝑏,𝑥,𝑦)=1

Tr(𝐾̂︁𝐴𝑎𝑥𝐾†̂︁𝐵𝑏
𝑦) ≤ Val*(𝐺). (3.71)

To conclude we use the following proposition.

Proposition 3.36. Let 𝐾𝑥𝑦 and 𝐾 be as above. Then

E
(𝑥,𝑦)∼𝜇

‖𝐾𝑥𝑦 −𝐾‖2
𝐹 ≤

12𝜆
𝛿
. (3.72)

Before proving the proposition let us see how it implies the desired bound on the second

term of (3.60).

|Tr(𝐾𝑥𝑦
̂︁𝐴𝑎𝑥𝐾†𝑥𝑦̂︁𝐵𝑏

𝑦)− Tr(𝐾̂︁𝐴𝑎𝑥𝐾†̂︁𝐵𝑏
𝑦)|

≤ |Tr((𝐾𝑥𝑦 −𝐾)̂︁𝐴𝑎𝑥𝐾†𝑥𝑦̂︁𝐵𝑏
𝑦)|+ |Tr(𝐾̂︁𝐴𝑎𝑥(𝐾†𝑥𝑦 −𝐾†)̂︁𝐵𝑏

𝑦)|

≤ Tr((𝐾𝑥𝑦 −𝐾)̂︁𝐴𝑎𝑥(𝐾𝑥𝑦 −𝐾)†̂︁𝐵𝑏
𝑦)1/2 · Tr(𝐾𝑥𝑦

̂︁𝐴𝑎𝑥𝐾†𝑥𝑦̂︁𝐵𝑏
𝑦)1/2

+ Tr((𝐾𝑥𝑦 −𝐾)̂︁𝐴𝑎𝑥(𝐾𝑥𝑦 −𝐾)†̂︁𝐵𝑏
𝑦)1/2 · Tr(𝐾̂︁𝐴𝑎𝑥𝐾†̂︁𝐵𝑏

𝑦)1/2. (3.73)

Averaging with E(𝑥,𝑦)∼𝜇
∑︀
𝑉 (𝑎,𝑏,𝑥,𝑦)=1 and applying Cauchy-Schwarz we see that (3.73) is

bounded by

[︂
E

(𝑥,𝑦)∼𝜇

∑︁
𝑉 (𝑎,𝑏,𝑥,𝑦)=1

Tr((𝐾𝑥𝑦 −𝐾)̂︁𝐴𝑎𝑥(𝐾𝑥𝑦 −𝐾)†̂︁𝐵𝑏
𝑦)
]︂1/2
·
[︂(︁

E
(𝑥,𝑦)∼𝜇

∑︁
𝑉 (𝑎,𝑏,𝑥,𝑦)=1

Tr(𝐾𝑥𝑦
̂︁𝐴𝑎𝑥𝐾†𝑥𝑦̂︁𝐵𝑏

𝑦)
)︁1/2

+
(︁

E
(𝑥,𝑦)∼𝜇

∑︁
𝑉 (𝑎,𝑏,𝑥,𝑦)=1

Tr(𝐾̂︁𝐴𝑎𝑥𝐾†̂︁𝐵𝑏
𝑦)
)︁1/2

]︂
.

(3.74)

We claim that the second term in brackets is at most 2. To see this note that replacing

the sum from ∑︀
𝑉 (𝑎,𝑏,𝑥,𝑦)=1 to a ∑︀

𝑎,𝑏 only increase the term, and the claim follows from
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Tr(𝐾𝑥𝑦𝐾
†
𝑥𝑦) = Tr(𝐾𝐾†) = 1. To bound the first term in (3.74), we again relax the summation

from ∑︀
𝑉 (𝑎,𝑏,𝑥,𝑦)=1 to ∑︀

𝑎,𝑏. This is valid because all the operators of the form (𝐾𝑥𝑦 −

𝐾)̂︁𝐴𝑎𝑥(𝐾𝑥𝑦 − 𝐾)†, 𝐵𝑦 ≥ 0 and hence all the additional terms introduced in the sum are

nonnegative. The desired result follows because

E
(𝑥,𝑦)∼𝜇

∑︁
𝑎,𝑏

Tr((𝐾𝑥𝑦−𝐾)̂︁𝐴𝑎𝑥(𝐾𝑥𝑦−𝐾)†̂︁𝐵𝑏
𝑦) ≤ E

(𝑥,𝑦)∼𝜇
Tr((𝐾𝑥,𝑦−𝐾)(𝐾𝑥,𝑦−𝐾)†) = E

𝑥,𝑦
‖𝐾𝑥,𝑦−𝐾‖2

𝐹 ,

(3.75)

which is bounded by Proposition 3.36. Combining all bounds, from (3.73) we get

E
(𝑥,𝑦)∼𝜇

∑︁
𝑉 (𝑎,𝑏,𝑥,𝑦)=1

Tr(𝐴𝑎𝑥𝜌1/2𝐵𝑏
𝑦𝜌

1/2)
Tr(𝐴𝑥𝜌1/2𝐵𝑦𝜌1/2) = E

(𝑥,𝑦)∼𝜇

∑︁
𝑉 (𝑎,𝑏,𝑥,𝑦)=1

Tr(̂︁𝐴𝑎𝑥𝐾𝑥𝑦
̂︁𝐵𝑏
𝑦𝐾
†
𝑥𝑦)

≤ E
(𝑥,𝑦)∼𝜇

∑︁
𝑉 (𝑎,𝑏,𝑥,𝑦)=1

Tr(̂︁𝐴𝑎𝑥𝐾̂︁𝐵𝑏
𝑦𝐾
†)

+ |Tr(𝐾𝑥𝑦
̂︁𝐴𝑎𝑥𝐾†𝑥𝑦̂︁𝐵𝑏

𝑦)− Tr(𝐾̂︁𝐴𝑎𝑥𝐾†̂︁𝐵𝑏
𝑦)|

≤ Val*(𝐺) + 2 ·
(︃

E
(𝑥,𝑦)∼𝜇

‖𝐾𝑥𝑦 −𝐾‖2
𝐹

)︃1/2

≤ Val*(𝐺) + 2
√︃

12𝜆
𝛿
.

The latter is bounded by 𝜀 by the choice of 𝜆. It only remains to prove Proposition 3.36.

Proof of Proposition 3.36. We have

‖𝐾𝑥𝑦 −𝐾‖𝐹 ≤
⃦⃦⃦⃦
⃦ Λ𝑥Γ𝑦√︁

Tr(Λ2
𝑥Γ2

𝑦)
− ΛΓ√︁

Tr(Λ2Γ2)

⃦⃦⃦⃦
⃦
𝐹

+
⃦⃦⃦⃦
⃦ Λ𝑥Γ𝑦√︁

Tr(Λ2Γ2)
− ΛΓ√︁

Tr(Λ2Γ2)

⃦⃦⃦⃦
⃦
𝐹

. (3.76)

For the first term,

E
(𝑥,𝑦)∼𝜇

⃦⃦⃦⃦
⃦ Λ𝑥Γ𝑦√︁

Tr(Λ2
𝑥Γ2

𝑦)
− Λ𝑥Γ𝑦√︁

Tr(Λ2Γ2)

⃦⃦⃦⃦
⃦

2

𝐹

= E
(𝑥,𝑦)∼𝜇

Tr(Λ2
𝑥Γ2

𝑦) ·
(︃

1√︁
Tr(Λ2

𝑥Γ2
𝑦)
− 1√︁

Tr(Λ2Γ2)

)︃2

= 1
Tr(Λ2Γ2) E

(𝑥,𝑦)∼𝜇

(︃√︁
Tr(Λ2

𝑥Γ2
𝑦)−

√︁
Tr(Λ2Γ2)

)︃2

≤ 1
Tr(Λ2Γ2) E

(𝑥,𝑦)∼𝜇
|Tr(Λ2

𝑥Γ2
𝑦)− Tr(Λ2Γ2)|

≤ 1
Tr(Λ2Γ2) E

(𝑥,𝑦)∼𝜇
|Tr((Λ2

𝑥 − Λ2)Γ2
𝑦)|+ |Tr(Λ2(Γ2

𝑦 − 𝒴2))|
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≤ 1
Tr(Λ2Γ2)

⃒⃒⃒⃒
E
𝑥
[Tr((Λ2

𝑥 − Λ2)2)]
⃒⃒⃒⃒1/2
·
⃒⃒⃒⃒
E
𝑦
[Tr(Γ4

𝑦)]
⃒⃒⃒⃒1/2

(3.77)

+ 1
Tr(Λ2Γ2)

⃒⃒⃒⃒
E
𝑥
[Tr((Γ2

𝑦 − Γ2)2)]
⃒⃒⃒⃒1/2
· Tr(Λ4)1/2, (3.78)

where the last step follows from two applications of Cauchy-Schwarz. Rewriting the above in

terms of 𝐴𝑥, 𝐵𝑦 and 𝜌 using (3.65) and its analogues we see that the term in (3.77) equals

1
Tr(𝐴𝜌1/2𝐵𝜌1/2)

⃒⃒⃒⃒
E
𝑥
[Tr((𝐴𝑥 − 𝐴)𝜌1/2(𝐴𝑥 − 𝐴)𝜌1/2)]

⃒⃒⃒⃒1/2
·
⃒⃒⃒⃒
E
𝑦
[Tr(𝐵𝑦𝜌

1/2𝐵𝑦𝜌
1/2)

⃒⃒⃒⃒1/2
(3.79)

Bounding the last term Tr(𝐵𝑦𝜌
1/2𝐵𝑦𝜌

1/2) by 1 and the first term by 2𝜆 (which follows by

applying Fact 2.5 and Claim 2.3) and doing the same analysis for (3.78) we see that

E
(𝑥,𝑦)∼𝜇

⃦⃦⃦⃦
⃦ Λ𝑥Γ𝑦√︁

Tr(Λ2
𝑥Γ2

𝑦)
− Λ𝑥Γ𝑦√︁

Tr(Λ2Γ2)

⃦⃦⃦⃦
⃦

2

𝐹

≤ 8𝜆
𝛿
. (3.80)

To bound the second term in (3.76) we argue as follows:

‖Λ𝑥Γ𝑦 − ΛΓ‖2
𝐹 ≤ 2 · ‖(Λ𝑥 − Λ)Γ𝑦‖2

𝐹 + 2 · ‖(Γ𝑦 − Γ)𝒳‖2
𝐹

= 2 · Tr(Γ2
𝑦(Λ𝑥 − Λ)2) + 2 · Tr((Γ𝑦 − Γ)2𝒳 2) (3.81)

≤ 2 · Tr(Γ4
𝑦)1/2 · Tr((Λ𝑥 − Λ)4)1/2 + 2 · Tr(Λ4)1/2 · Tr((Γ𝑦 − Γ)4)1/2 (3.82)

≤ 2 · Tr(Γ4
𝑦)1/2 · Tr[(Λ2

𝑥 − Λ2)2]1/2 + 2 · Tr(Λ4)1/2 · Tr[(Γ2
𝑦 − Γ2)2]1/2, (3.83)

where in the last step we used Lemma 2.6. Using the same bound on the above terms as in

the above we see that

E
(𝑥,𝑦)∼𝜇

‖Λ𝑥Γ𝑦 − ΛΓ‖2
𝐹 ≤ 8𝜆. (3.84)

Since in the large case Tr(𝐴𝜌1/2𝐵𝜌1/2) ≥ 𝛿
2 the result follows.
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Chapter 4

Parallel Repetition via Anchoring

This chapter is based on the paper Hardness amplification for entangled games via anchoring,

a joint work with T. Vidick and H. Yuen, to be published in the Proceedings of 49th Annual

ACM Symposium on the Theory of Computing (STOC 2017) and also presented at the

Quantum Information Processing Conference (QIP 2016) as a plenary talk.

4.1 Introduction

In this chapter, we study the parallel repetition of a class of games which we call anchored.

We also prove an exponential-decay parallel repetition theorem for anchored games that

involve any number of entangled players. We also prove a threshold version of our parallel

repetition theorem for anchored games.

Let us start by giving a definition of anchored games in full generality.

Definition 4.1 (Multiplayer Anchored Games). A game 𝐺 = (𝒳 ,𝒜, 𝜇, 𝑉 ) is called 𝛼-

anchored if there exists 𝒳 𝑡
⊥ ⊆ 𝒳 𝑡 for all 𝑡 ∈ [𝑘] where

1. 𝜇(𝒳 𝑡
⊥) ≥ 𝛼 for all 𝑡 ∈ [𝑘], and

2. for all 𝑥 ∈ 𝒳 ,

𝜇(𝑥) = 𝜇(𝑥|𝐹𝑥
) ·

∏︁
𝑡∈𝐹𝑥

𝜇(𝑥𝑡) (4.1)
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where for all question tuples 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑘) ∈ 𝒳 , 𝐹𝑥 ⊆ [𝑛] denotes the set of coordinates

of 𝑥 that lie in the anchor, i.e.

𝐹𝑥 = {𝑡 ∈ [𝑘] : 𝑥𝑡 ∈ 𝒳 𝑡
⊥}

and 𝐹 𝑥 denotes the complement, i.e., [𝑛]− 𝐹𝑥.

Here for a set 𝑆 ⊆ [𝑛], 𝜇(𝑥|𝑆) denotes the marginal probability of the question tuple 𝑥

restricted to the coordinates in 𝑆, i.e.

𝜇(𝑥|𝑆) =
∑︁

𝑥′|𝑆=𝑥|𝑆

𝜇(𝑥′).

When 𝑘 = 2 this definition coincides with the definition of two-player anchored games in

Definition 4.6. Additionally, just like the two-player case, one can easily extend the anchoring

transformation given in Definition 1.4 to arbitrary 𝑘-player games:

Proposition 4.2. Let 𝐺 = (𝒳 ,𝒜, 𝜇, 𝑉 ) be a 𝑘-player game. Let 𝐺⊥ be the 𝑘-player game

where the referee samples (𝑥1, 𝑥2, . . . , 𝑥𝑘) according to 𝜇, replaces each 𝑥𝑡 with an auxiliary

symbol ⊥ independently with probability 𝛼, and checks the players’ answers according to 𝑉 if

all 𝑥𝑡 ̸= ⊥, and otherwise the referee accepts. Then 𝐺⊥ is an 𝛼-anchored game satisfying

val(𝐺⊥) = 1− (1− 𝛼)𝑘 · (1− val(𝐺)), val*(𝐺⊥) = 1− (1− 𝛼)𝑘 · (1− val*(𝐺)). (4.2)

Proof. We give the proof for the classical value; the same argument carries over to the

entangled value. First, it is clear that val(𝐺⊥) ≥ (1− (1− 𝛼𝑘)) + (1− 𝛼)𝑘 · val(𝐺). For the

other direction, consider an optimal strategy for 𝐺⊥. Under this strategy, we can express the

entangled value as

val(𝐺⊥) = (1− 𝛼)𝑘 · Pr(𝑊 |∀𝑡, 𝑥𝑡 ̸= ⊥) + (1− (1− 𝛼𝑘)) · Pr(𝑊 |∃ 𝑡 s.t. 𝑥𝑡 = ⊥)

where 𝑊 is the event that the players win. The optimal strategy for 𝐺⊥ yields a strategy

for 𝐺 that wins with probability Pr(𝑊 |∀𝑡, 𝑥𝑡 ̸= ⊥), which can be at most val(𝐺). Since

Pr(𝑊 |∃ 𝑡 s.t. 𝑥𝑡 = ⊥) = 1, we obtain the desired equality.
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4.2 Application to the quantum PCP conjecture

Just as the the classical parallel repetition theorem is useful for proving hardness of approxi-

mation results, one might expect that a quantum parallel repetition theorem would be useful

for proving quantum hardness of approximation results. However, we do not (yet) have a

Quantum PCP theorem; as of writing this is an active field of research. Furthermore, while

the classical PCP theorem has three equivalent formulations – one in terms of probabilistically

checkable proofs, one in terms of hardness of approximation for constraint satisfaction prob-

lems (CSP), and one in terms of games – only two out of the three corresponding formulations

of the Quantum PCP Conjecture are known to be equivalent.

The following is the formulation of the Quantum PCP Conjecture that is analogous to

the classical CSP formulation. (We refer to the survey [2] for further background on the

conjecture, including explanations of the standard technical terms we use below.)

Conjecture 4.3 (Quantum PCP Conjecture, constraint satisfaction formulation). There

exists a constant 0 < 𝛾 < 1 and integer 𝑘 ≥ 2 and 𝑑 ≥ 2 for which the following problem is

QMA-hard: Given 𝑎, 𝑏 ∈ [0, 1] such that 𝑎−𝑏 ≥ 𝛾 and a 𝑘-local Hamiltonian 𝐻 = 𝐻1+· · ·+𝐻𝑚

acting on 𝑛 qudits of local dimension 𝑑 such that 0 ≤ 𝐻 ≤ I, decide whether the smallest

eigenvalue of 𝐻 is at least 𝑎 or at most 𝑏, promised that one is the case.

This problem is known as the 𝑘-Local Hamiltonian problem with constant promise

gap, where by promise gap we mean the gap 𝛾 between the thresholds 𝑎 and 𝑏. The problem

is only known to be QMA-hard for gaps 𝛾 that are inverse polynomial in 𝑛 [44].

A games version of the conjecture is introduced in [32]:

Conjecture 4.4 (Quantum PCP Conjecture, games formulation). There exists a constant

𝛾 ∈ (0, 1) and integers 𝑠 ≥ 1, 𝑘 ≥ 2 for which the following problem is QMA-hard: Given

𝑎, 𝑏 ∈ [0, 1] such that 𝑎− 𝑏 ≥ 𝛾, and a 𝑘-player game 𝐺 where each player answers with 𝑠

bits, decide whether val*(𝐺) ≥ 𝑎 or val*(𝐺) ≤ 𝑏, promised that one is the case.

When val*(·) is replaced with val(·), the above conjecture is exactly equivalent to the

classical PCP theorem. For constant gap 𝛾 it was proved by [60] that the problem of

approximating the entangled value of a game is at least NP-hard. For inverse polynomial
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𝛾 the problem was shown QMA-hard [41], and very recently it was even shown to be

NEXP-hard [42].

Though neither Conjecture 4.3 nor Conjecture 4.4 has been solved, we can nonetheless

explore the consequences if they were true. We give a simple application of our parallel

repetition for anchored games: assuming the truth of Conjecture 4.4, we can boost its hardness

to any desired gap between completeness and soundness.

Proposition 4.5. If Conjecture 4.4 is true, then for all 𝛿 > 0 the following problem is

QMA-hard: given a description of a 𝑘-player game 𝐺 with answer size that depends only on

𝛿, distinguish between val*(𝐺) ≥ 1− 𝛿 or val*(𝐺) ≤ 𝛿, promised that one is the case.

Proof. Let 0 ≤ 𝑏 < 𝑎 ≤ 1 be a promise gap satisfying the conditions of Conjecture 4.4. Define

𝑎′ = (1 + 3𝑎)/4, and 𝑏′ = (1 + 3𝑏)/4. Consider the following reduction: given a description of

a 𝑘-player game 𝐺, promised that either val*(𝐺) ≤ 𝑏 or val*(𝐺) ≥ 𝑎, outputs the description

of the following threshold game 𝐺𝑡,≥𝜏
⊥ : the referee plays 𝐺⊗𝑡⊥ , the 𝑡-fold repetition of 𝐺⊥, the

anchored version of 𝐺, but instead accepts iff the players win at least 𝜏 := (𝑎′− 𝑎′−𝑏′

4 )𝑡 games.

We set parameters Δ = (𝑎′ − 𝑏′)/4 and 𝑡 = 𝑠
𝑐
· 2

Δ9 · ln 1
𝛿
, where 𝑠 is the length of the players’

answers in 𝐺, and 𝑐 is the universal constant from Theorem 4.16.

We get that if val*(𝐺) ≥ 𝑎, then val*(𝐺⊥) ≥ 𝑎′. One strategy for 𝐺𝑡,≥𝜏
⊥ is for the

players to play each coordinately independently using the optimal strategy for 𝐺⊥. By a

Chernoff-Hoeffding bound, the probability that they win at least 𝜏 games is at least

val*(𝐺𝑡,≥𝜏
⊥ ) ≥ 1− exp(−𝑡Δ2/2) ≥ 1− 𝛿.

Otherwise, val*(𝐺) ≤ 𝑏. Applying Theorem 4.16, we get that

val*(𝐺𝑡,≥𝜏
⊥ ) ≤

(︁
1−Δ9/2

)︁𝑐𝑘𝑡/𝑠 ≤ 𝛿.

Observe that this reduction is efficient: the size of the description of 𝐺𝑡,≥𝜏
⊥ is 𝑂(|𝐺|𝑡); assuming

the truth of Conjecture 4.4 this means that 𝑎′ − 𝑏′ = Ω(𝑎 − 𝑏) = Ω(1), and thus since 𝛿

and 𝑠 are constant, 𝑡 is constant. The answer size of the new game is still 𝑂(1). Thus the

reduction runs in time polynomial in the input instance size, so if there were an algorithm that
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could distinguish between val*(𝐺𝑡,≥𝜏
⊥ ) ≥ 1− 𝛿 or val*(𝐺𝑡,≥𝜏

⊥ ) ≤ 𝛿, then this would distinguish

between whether val*(𝐺) ≥ 𝑎 or val*(𝐺) ≤ 𝑏, respectively.

We point out that we used two features of the anchoring transformation: first, that it

allows us to analyze the repetition of arbitrary 𝑘-player games; second, it yields threshold

theorems for parallel repetition.

4.3 Technical overview

We give a technical overview of anchored games and their parallel repetition. For concreteness

we focus on the case of two-player games, though all the things discussed in this section can

be appropriately generalized to the 𝑘-player games.

Definition 4.6 (Two-player anchored games). Let 𝐺 be a two-player game with question

alphabet 𝒳 × 𝒴 and distribution 𝜇. For any 0 < 𝛼 ≤ 1 we say that 𝐺 is 𝛼-anchored if there

exists subsets 𝒳⊥ ⊆ 𝒳 and 𝒴⊥ ⊆ 𝒴 such that, denoting by 𝜇 the respective marginals of 𝜇

on both coordinates,

1. Both 𝜇(𝒳⊥), 𝜇(𝑌⊥) ≥ 𝛼,

2. Whenever 𝑥 ∈ 𝒳⊥ or 𝑦 ∈ 𝒴⊥ it holds that 𝜇(𝑥, 𝑦) = 𝜇(𝑥) · 𝜇(𝑦).

Informally, a game is anchored if each player independently has a significant probability

of receiving a question from the set of “anchor questions” 𝒳⊥ and 𝒴⊥. An alternative way of

thinking about the class of anchored games is to consider the case where 𝜇 is uniform over a

set of edges in a bipartite graph on vertex set 𝒳 × 𝒴 ; then the condition is that the induced

subgraph on 𝒳⊥ × 𝒴⊥ is a complete bipartite graph that is connected to the rest of 𝒳 × 𝒴

and has weight at least 𝛼. In other words, a game 𝐺 is anchored if it contains a free game

that is connected to the entire game.

It is easy to see that the games 𝐺⊥ output by the anchoring transformation given in

Definition 1.4 are 𝛼-anchored. Free games are automatically 1-anchored (set 𝒳⊥ = 𝒳 and

𝒴⊥ = 𝒴), but the class of anchored games is much broader; indeed assuming the Exponential

Time Hypothesis it is unlikely that there exists a similar (efficient) reduction from general
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games to free games [1]. Additionally, since free games are anchored games, our parallel

repetition theorems automatically reproduce the quantum and multiplayer parallel repetition

of free games results of [40, 19, 20], albeit with worse parameters.

Dependency-breaking variables and states. Essentially all known proofs of parallel

repetition proceed via reduction, showing how a “too good” strategy for the repeated game

𝐺⊗𝑛 can be “rounded” into a strategy for 𝐺 with success probability strictly greater than

val(𝐺), yielding a contradiction.

Let 𝑆𝑛 be a strategy for 𝐺⊗𝑛 that has a high success probability. By an inductive argument

one can identify a set of coordinates 𝐶 and an index 𝑖 such that Pr(Players win round 𝑖|𝑊 ) >

val(𝐺) + 𝛿, where 𝑊 is the event that the players’ answers satisfy the predicate 𝑉 in all

instances of 𝐺 indexed by 𝐶. Given a pair of questions (𝑥, 𝑦) in 𝐺 the strategy 𝑆 embeds

them in the 𝑖-th coordinate of a 𝑛-tuple of questions

𝑥[𝑛]𝑦[𝑛] =
(︃
𝑥1, 𝑥2, . . . , 𝑥𝑖−1, 𝑥, 𝑥𝑖+1, . . . , 𝑥𝑛
𝑦1, 𝑦2, . . . , 𝑦𝑖−1, 𝑦, 𝑦𝑖+1, . . . , 𝑦𝑛

)︃

that is distributed according to P𝑋[𝑛]𝑌[𝑛]|𝑋𝑖=𝑥,𝑌𝑖=𝑦,𝑊 . The players then simulate 𝑆𝑛 on 𝑥[𝑛] and

𝑦[𝑛] respectively to obtain answers (𝑎1, . . . , 𝑎𝑛) and (𝑏1, . . . , 𝑏𝑛), and return (𝑎𝑖, 𝑏𝑖) as their

answers in 𝐺. The strategy 𝑆 succeeds with probability precisely Pr(Win 𝑖|𝑊 ) in 𝐺, yielding

the desired contradiction.

As 𝑆𝑛 need not be a product strategy, conditioning on 𝑊 may introduce correlations

that make P𝑋[𝑛]𝑌[𝑛]|𝑋𝑖=𝑥,𝑌𝑖=𝑦,𝑊 impossible to sample exactly. A key insight in Raz’ proof of

parallel repetition is that it is still possible for the players to approximately sample from this

distribution. Drawing on the work of Razborov [55], Raz introduced a dependency-breaking

variable Ω with the following properties:

(a) Given 𝜔 ∼ PΩ the players can locally sample 𝑥[𝑛] and 𝑦[𝑛] according to P𝑋[𝑛]𝑌[𝑛]|𝑋𝑖=𝑥,𝑌𝑖=𝑦,𝑊 ,

(b) The players can jointly sample from PΩ using shared randomness.

In [37] Ω is defined so that a sample 𝜔 fixes at least one of {𝑥𝑖′ , 𝑦𝑖′} for each 𝑖′ ̸= 𝑖. It can

then be shown that conditioned on 𝑥, Ω is nearly (though not exactly) independent of 𝑦, and
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vice-versa. In other words,

PΩ|𝑋𝑖=𝑥,𝑊 ≈ PΩ|𝑋𝑖=𝑥,𝑌𝑖=𝑦,𝑊 ≈ PΩ|𝑌𝑖=𝑦,𝑊 (4.3)

where “≈” denotes closeness in statistical distance. Eq. (4.3) suffices to guarantee that

the players can approximately sample the same 𝜔 from PΩ|𝑋𝑖=𝑥,𝑌𝑖=𝑦,𝑊 with high probability,

achieving point (b) above. This sampling is accomplished through a technique called correlated

sampling.

This argument relies heavily on the assumption that there are only two players who

employ a deterministic strategy. With more than two players, it is not known how to design

an appropriate dependency-breaking variable Ω that satisfies requirements (a) and (b) above:

in order to be jointly sampleable, Ω needs to fix as few inputs as possible; in order to allow

players to locally sample their inputs conditioned on Ω, the variable needs to fix as many

inputs as possible. These two requirements are in direct conflict as soon as there are more

than two players.

In the quantum case the rounding argument seems to require that Alice and Bob jointly

sample a dependency-breaking state |Ω𝑥,𝑦⟩, which again depends on both their inputs. Although

it is technically more complicated, as a first approximation |Ω𝑥,𝑦⟩ can be thought of as the

players’ post-measurement state, conditioned on 𝑊 . Designing a state that simultaneously

allows Alice and Bob to (a) simulate the execution of the 𝑖-th game in 𝐺⊗𝑛 conditioned on

𝑊 , and (b) locally generate |Ω𝑥,𝑦⟩ without communication is the main obstacle to proving a

fully general parallel repetition theorem for entangled games.

It has long been known that in the free games case (i.e. games with product question

distributions) these troubles with the dependency-breaking variable disappear, and conse-

quently we have parallel repetition theorems for free games for the multiplayer and quantum

settings [20]. With free games involving more than two players, it can be shown that

PΩ|𝑋𝑖=𝑥,𝑌𝑖=𝑦,𝑍𝑖=𝑧,...,𝑊 ≈ PΩ|𝑊 , (4.4)

on average over question tuples (𝑥, 𝑦, 𝑧, . . .). In the quantum case, [40, 19, 20] showed how to
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construct dependency-breaking states |Ω𝑋𝑖=𝑥,𝑌𝑖=𝑦,𝑊 ⟩ and local unitaries 𝑈𝑥 and 𝑉𝑦 such that

(𝑈𝑥 ⊗ 𝑉𝑦)|Ω⟩ ≈ |Ω𝑋𝑖=𝑥,𝑌𝑖=𝑦,𝑊 ⟩ (4.5)

for some fixed quantum state |Ω⟩. This eliminates the need for the players to use correlated

sampling, as they can simply share a sample from PΩ|𝑊 or the quantum state |Ω⟩ from the

outset.

Breaking correlations in repeated anchored games. Rather than providing a com-

plete extension of the framework of Raz and Holenstein to the multiplayer and quantum

settings, we interpolate between the case of free games and the general setting by showing

how the same framework of dependency-breaking variables and states can be extended to

anchored games – without using correlated sampling. We introduce dependency-breaking

variables Ω and states |Φ𝑥,𝑦⟩ so that we can prove analogous statements to (4.4) and (4.5) in

the anchored games setting.

The analysis for anchored games is more intricate than for free games. Proofs of the

analogous statements for free games in [40, 19, 20] make crucial use of the fact that all

possible question tuples are possible. An anchored game can be far from having this property.

Instead, we use the anchors as a “home base” that is connected to all questions. Intuitively,

no matter what question tuple (𝑥, 𝑦, 𝑧, . . .) we are considering, it is only a few replacements

away from the set of anchor questions. Thus the dependency of the variable Ω or state |Φ𝑥,𝑦⟩

on the questions can be iteratively removed by “switching” each players’ question to an

anchor as

PΩ|𝑋𝑖=𝑥,𝑌𝑖=𝑦,𝑍𝑖=𝑧,𝑊 ≈ PΩ|𝑋𝑖=𝑥,𝑌𝑖=𝑦,𝑍𝑖∈⊥,𝑊 ≈ PΩ|𝑋𝑖=𝑥,𝑌𝑖∈⊥,𝑍𝑖∈⊥,𝑊 ≈ PΩ|𝑋𝑖∈⊥,𝑌𝑖∈⊥,𝑍𝑖∈⊥,𝑊 ,

where “𝑋𝑖 ∈ ⊥” is shorthand for the event that 𝑋𝑖 ∈ 𝒳⊥.

Dealing with quantum strategies adds another layer of complexity to the argument. The

local unitaries 𝑈𝑥 and 𝑉𝑦 involved in (4.5) are quite important in the arguments of [40, 19, 20].

The difficulty in extending the argument for free games to the case of general games is to

show that these local unitaries each only depend on the input to a single player. In fact with
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the definition of |Ω𝑥,𝑦⟩ used in these works it appears likely that this statement does not hold,

thus a different approach must be found.

When the game is anchored, however, we are able to use the anchor question in order

to show the existence of unitaries 𝑈𝑥 and 𝑉𝑦 that achieve (4.5) and depend only on a single

player’s question each. Achieving this requires us to introduce dependency-breaking states

|Ω𝑥,𝑦⟩ that are more complicated than those used in the free games case; in particular they

include information about the classical dependency-breaking variables of Raz and Holenstein.

We prove (4.5) for anchored games by proving a sequence of approximate equalities: first

we show that for most 𝑥 there exists 𝑈𝑥 such that (𝑈𝑥 ⊗ I)|Ω⊥,⊥⟩ ≈ |Ω𝑥,⊥⟩, where |Ω⊥,⊥⟩

denotes the dependency-breaking state in the case that both Alice and Bob receive the

anchor question “⊥”, and |Ω𝑥,⊥⟩ denotes the state when Alice receives 𝑥 and Bob receives

“⊥”. Then we show that for all 𝑦 such that 𝜇(𝑦|𝑥) > 0 there exists a unitary 𝑉𝑦 such that

(I⊗ 𝑉𝑦)|Ω𝑥,⊥⟩ ≈ |Ω𝑥,𝑦⟩. Accomplishing this step requires ideas and techniques going beyond

those in the free games case. Interestingly, a crucial component of our proof is to argue the

existence of a local unitary 𝑅𝑥,𝑦 that depends on both inputs 𝑥 and 𝑦. The unitary 𝑅𝑥,𝑦 is

not implemented by Alice or Bob in the simulation, but it is needed to show that 𝑉𝑦 maps

|Ω𝑥,⊥⟩ onto |Ω𝑥,𝑦⟩.

One can view our work as pushing the limits of arguments for parallel repetition that do

not require some form of correlated sampling, a procedure that seems inherently necessary to

analyze the general case. Our results demonstrate that such procedure is not needed for the

purpose of achieving strong gap amplification theorems for multiplayer and quantum games.

4.4 Parallel repetition of anchored games with entan-

gled players

This section is devoted to the analysis of the entangled value of repeated anchored games.

The main theorem we prove is the following:
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Theorem 4.7. Let 𝐺 be a 𝑘-player 𝛼-anchored game satisfying val*(𝐺) = 1− 𝜀. Then

val*(𝐺⊗𝑛) ≤ exp
(︃
−Ω

(︃
poly(𝛼𝑘) · 𝜀8 · 𝑛

poly(𝑘) · 𝑠

)︃)︃
,

where 𝑠 is the total length of the answers output by the players.

For clarity we will focus on the 𝑘 = 2 (two-player) case; we will describe how to extend the

proof to arbitrary 𝑘 at the end. We fix an 𝛼-anchored two-player game𝐺 = (𝒳×𝒴 ,𝒜×ℬ, 𝜇, 𝑉 )

with entangled value val*(𝐺) = 1− 𝜀 and anchor sets 𝒳⊥ ⊆ 𝒳 , 𝒴⊥ ⊆ 𝒴 for Alice and Bob,

respectively. We also fix an optimal strategy for 𝐺⊗𝑛, consisting of a shared entangled state

|𝜓⟩𝐸𝐴𝐸𝐵 and POVMs {𝐴𝑎𝑛

𝑥𝑛} and {𝐵𝑏𝑛

𝑦𝑛} for Alice and Bob respectively. Without loss of

generality we assume that |𝜓⟩ is invariant under permutation of the two registers, i.e. there

exist basis vectors {|𝑣𝑗⟩}𝑗 such that |𝜓⟩ = ∑︀
𝑗

√︁
𝜆𝑗|𝑣𝑗⟩|𝑣𝑗⟩.

4.4.1 Setup

We introduce the random variables, entangled states and operators that play an important

role in the proof of Theorem 4.7. The section is divided into three parts: first we define the

dependency-breaking variable Ω. Then we state useful lemmas about conditioned distributions.

Finally we describe the states and operators used in the proof.

Dependency-breaking variables. Let 𝐶 ⊆ [𝑛] a fixed set of coordinates for the repeated

game 𝐺⊗𝑛. We will assume that 𝐶 = {𝑚+ 1,𝑚+ 2, . . . , 𝑛}, where 𝑚 = 𝑛− |𝐶|, as this will

easily be seen to hold without loss of generality. Let (𝑋𝑛, 𝑌 𝑛) be distributed according to 𝜇𝑛

and (𝐴𝑛, 𝐵𝑛) be defined from 𝑋𝑛 and 𝑌 𝑛 as follows:

P𝐴𝑛𝐵𝑛|𝑋𝑛=𝑥𝑛,𝑌 𝑛=𝑦𝑛(𝑎𝑛, 𝑏𝑛) = ⟨𝜓|𝐴𝑎𝑛

𝑥𝑛 ⊗𝐵𝑏𝑛

𝑦𝑛|𝜓⟩.

Let (𝑋𝐶 , 𝑌𝐶) and Z = (𝐴𝐶 , 𝐵𝐶) denote the players’ questions and answers respectively

associated with the coordinates indexed by 𝐶. For 𝑖 ∈ [𝑛] let 𝑊𝑖 denote the event that the

players win round 𝑖 while playing 𝐺⊗𝑛. Let 𝑊𝐶 = ⋀︀
𝑖∈𝐶𝑊𝑖.

We use the same dependency-breaking variable Ω that is used in Holenstein’s proof of
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parallel repetition. In those works, for all 𝑖 ∈ [𝑛], Ω𝑖 fixes at least one of 𝑋𝑖 or 𝑌𝑖 (and

sometimes both, if 𝑖 ∈ 𝐶). Thus, conditioned on Ω, 𝑋𝑛 and 𝑌 𝑛 are independent of each

other.

In more detail, let 𝐷1, . . . , 𝐷𝑚 be independent and uniformly distributed over {𝐴,𝐵}.

Let 𝑀1, . . . ,𝑀𝑚 be independent random variables defined in the following way. If 𝐷𝑖 = 𝐴,

then 𝑀𝑖 is coupled to 𝑋𝑖 (that is, takes the same value as 𝑋𝑖). Otherwise, if 𝐷𝑖 = 𝐵, then

𝑀𝑖 is coupled to 𝑌𝑖. Then Ω𝑖 = (𝐷𝑖,𝑀𝑖), and Ω = (Ω1, . . . ,Ω𝑚, 𝑋𝐶 , 𝑌𝐶).

Conditioned distributions. Define 𝛿𝐶 := 1
𝑚

(log 1/Pr(𝑊𝐶) + |𝐶| log |𝒜||ℬ|). For nota-

tional convenience we often use the shorthand 𝑋𝑖 ∈ ⊥ and 𝑌𝑖 ∈ ⊥ to stand for 𝑋𝑖 ∈ 𝒳⊥ and

𝑌𝑖 ∈ 𝒴⊥, respectively. The following lemma essentially follows from the classical arguments

used in [37].

Lemma 4.8. The following statements hold on, average over 𝑖 chosen uniformly in [𝑚]:

1. E𝑖 ‖P𝐷𝑖𝑀𝑖𝑋𝑖𝑌𝑖|𝑊𝐶
− P𝐷𝑖𝑀𝑖𝑋𝑖𝑌𝑖

‖ ≤ 𝑂(
√
𝛿𝐶)

2. E𝑖 ‖PΩ𝑍𝑋𝑖𝑌𝑖|𝑊𝐶
− PΩ𝑍|𝑊𝐶

P𝑋𝑖𝑌𝑖|Ω‖ ≤ 𝑂(
√
𝛿𝐶)

3. E𝑖 ‖P𝑋𝑖𝑌𝑖
PΩ−𝑖𝑍|𝑋𝑖∈⊥,𝑌𝑖∈⊥,𝑊𝐶

− P𝑋𝑖𝑌𝑖
PΩ−𝑖𝑍|𝑋𝑖𝑌𝑖𝑊𝐶

‖ ≤ 𝑂(
√
𝛿𝐶/𝛼

2)

4. E𝑖
⃦⃦⃦
P𝑋𝑖𝑌𝑖

PΩ−𝑖𝑍|𝑋𝑖𝑌𝑖𝑊𝐶
− P𝑋𝑖𝑌𝑖Ω−𝑖𝑍|𝑊

⃦⃦⃦
≤ 𝑂(

√
𝛿𝐶/𝛼

2)

Quantum states and operators. Recall that we have fixed an optimal strategy for Alice

and Bob in the game 𝐺⊗𝑛. This specifies a shared entangled state |𝜓⟩, and measurement

operators {𝐴𝑎𝑛

𝑥𝑛} for Alice and {𝐵𝑏𝑛

𝑦𝑛} for Bob.

Operators. Define, for all 𝑎𝐶 , 𝑏𝐶 , 𝑥𝑛, 𝑦𝑛:

𝐴𝑎𝐶
𝑥𝑛 :=

∑︁
𝑎𝑛|𝑎𝐶

𝐴𝑎
𝑛

𝑥𝑛 𝐵𝑏𝐶
𝑦𝑛 :=

∑︁
𝑏𝑛|𝑏𝐶

𝐵𝑏𝑛

𝑦𝑛

where 𝑎𝑛|𝑎𝐶 (resp. 𝑏𝑛|𝑏𝐶) indicates summing over all tuples 𝑎𝑛 consistent with the suffix 𝑎𝐶
(resp. 𝑏𝑛 consistent with suffix 𝑏𝐶). For all 𝑖, 𝜔−𝑖, 𝑥𝑖, and 𝑦𝑖 define:

𝐴𝑎𝐶
𝜔−𝑖,𝑥𝑖

= E
𝑋𝑛|𝜔−𝑖,𝑥𝑖

𝐴𝑎𝐶
𝑥𝑛 𝐵𝑏𝐶

𝜔−𝑖,𝑦𝑖
= E

𝑌 𝑛|𝜔−𝑖,𝑦𝑖

𝐵𝑏𝐶
𝑦𝑛
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where recall that E𝑋𝑛|𝜔−𝑖,𝑥𝑖
is shorthand for E𝑋𝑛|Ω−𝑖=𝜔−𝑖,𝑋𝑖=𝑥𝑖

. Intuitively, these operators

represent the “average” measurement that Alice and Bob apply, conditioned on Ω−𝑖 = 𝜔−𝑖,

and 𝑋𝑖 = 𝑥𝑖 and 𝑌𝑖 = 𝑦𝑖. Next, define

𝐴𝑎𝐶
𝜔−𝑖,⊥

:= E
𝑋𝑛|Ω−𝑖=𝜔−𝑖∧𝑋𝑖∈⊥

𝐴𝑎𝐶
𝑥𝑛 𝐵𝑏𝐶

𝜔−𝑖,⊥
:= E

𝑌 𝑛|Ω−𝑖=𝜔−𝑖∧𝑌𝑖∈⊥
𝐵𝑏𝐶
𝑦𝑛 .

These operators represent the “average” measurement performed by Alice and Bob, condi-

tioned on Ω−𝑖 = 𝜔−𝑖 and 𝑀𝑖 = ⊥. Finally, for all 𝑥𝑖 ∈ 𝒳 and 𝑦𝑖 ∈ 𝒴 , define

𝐴𝑎𝐶

𝜔−𝑖,⊥/𝑥𝑖
:= 1

2𝐴
𝑎𝐶
𝜔−𝑖,⊥

+ 1
2𝐴

𝑎𝐶
𝜔−𝑖,𝑥𝑖

𝐵𝑏𝐶

𝜔−𝑖,⊥/𝑦𝑖
:= 1

2𝐵
𝑏𝐶
𝜔−𝑖,⊥

+ 1
2𝐵

𝑏𝐶
𝜔−𝑖,𝑦𝑖

.

Intuitively, these operators represent the “average” measurements conditioned on Ω−𝑖 = 𝜔−𝑖

and when 𝑋𝑖 is 𝑥𝑖 with probability 1/2 and ⊥ with probability 1/2 (or when 𝑌𝑖 = 𝑦𝑖 with

probability 1/2 and ⊥ with probability 1/2).

For notational convenience we often suppress the dependence on (𝑖, 𝜔−𝑖, 𝑧 = (𝑎𝐶 , 𝑏𝐶))

when it is clea from context. Thus, when we refer to an operator such as 𝐴⊥/𝑥, we really

mean the operator 𝐴𝑎𝐶

𝜔−𝑖,⊥/𝑥𝑖
.

States. For all 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴 , define the following (unnormalized) states:

|Φ𝑥,𝑦⟩ :=
√︁
𝐴𝑥 ⊗

√︁
𝐵𝑦|𝜓⟩ |Φ𝑥,⊥⟩ :=

√︁
𝐴𝑥 ⊗

√︁
𝐵⊥|𝜓⟩

|Φ⊥/𝑥,⊥⟩ :=
√︁
𝐴⊥/𝑥 ⊗

√︁
𝐵⊥|𝜓⟩ |Φ⊥/𝑥,𝑦⟩ :=

√︁
𝐴⊥/𝑥 ⊗

√︁
𝐵𝑦|𝜓⟩ (4.6)

|Φ⊥,⊥⟩ :=
√︁
𝐴⊥ ⊗

√︁
𝐵⊥|𝜓⟩

together with the normalization factors

𝛾𝑥,𝑦 := ‖|Φ𝑥,𝑦⟩‖ 𝛾𝑥,⊥ := ‖|Φ𝑥,⊥⟩‖

𝛾⊥/𝑥,⊥ :=
⃦⃦⃦
|Φ⊥/𝑥,⊥⟩

⃦⃦⃦
𝛾⊥/𝑥,𝑦 :=

⃦⃦⃦
|Φ⊥/𝑥,𝑦⟩

⃦⃦⃦
𝛾⊥,⊥ := ‖|Φ⊥,⊥⟩‖

Note that these normalization factors are the square-roots of the probabilities that a certain

80



pair of answers 𝑧 = (𝑎𝐶 , 𝑏𝐶) occurred, given the specified inputs and the dependency-breaking

variables. For example, revealing the depencies on 𝜔−𝑖 and 𝑧, we have

𝛾𝜔−𝑖,𝑧
𝑥𝑖,𝑦𝑖

=
√︁

PZ|𝜔−𝑖,𝑥𝑖,𝑦𝑖
(𝑧).

We denote the normalized states by |̃︀Φ𝑥,𝑦⟩ = |Φ𝑥,𝑦⟩/𝛾𝑥,𝑦, |̃︀Φ𝑥,⊥⟩ = |Φ𝑥,⊥⟩/𝛾𝑥,⊥, |̃︀Φ⊥/𝑥,⊥⟩ =

|Φ⊥,⊥⟩/𝛾⊥/𝑥,⊥, |̃︀Φ⊥/𝑥,⊥/𝑦⟩ = |Φ⊥/𝑥,𝑦⟩/𝛾⊥/𝑥,𝑦, and |̃︀Φ⊥,⊥⟩ = |Φ⊥,⊥⟩/𝛾⊥,⊥.

4.4.2 Proof of the parallel repetition theorem

Lemma 4.9. Let 𝐺 be an 𝛼-anchored two-player game. Let 𝐶 ⊂ [𝑛] be a set of coordinates.

Then

E
𝑖/∈𝐶

Pr(𝑊𝑖|𝑊𝐶) ≤ val*(𝐺) +𝑂(𝛿1/8
𝐶 /𝛼2)

where the expectation is over a uniformly chosen 𝑖 ∈ [𝑛]∖𝐶 and 𝛿𝐶 = 1
𝑚

(log 1/Pr(𝑊𝐶) + |𝐶| log |𝒜||ℬ|).

Proof. For every 𝜔−𝑖, 𝑧 = (𝑎𝐶 , 𝑏𝐶), 𝑥𝑖 ∈ 𝒳 , 𝑦𝑖 ∈ 𝒴 , 𝑎𝑖 ∈ 𝒜 and 𝑏𝑖 ∈ ℬ, define

𝐴𝑎𝑖
𝜔−𝑖,𝑥𝑖

:=
∑︁

𝑎𝑛|𝑎𝑖,𝑎𝐶

(𝐴𝑎𝐶
𝜔−𝑖,𝑥𝑖

)−1/2𝐴𝑎
𝑛

𝜔−𝑖,𝑥𝑖
(𝐴𝑎𝐶

𝜔−𝑖,𝑥𝑖
)−1/2

�̂�𝑏𝑖
𝜔−𝑖,𝑦𝑖

:=
∑︁

𝑏𝑛|𝑏𝑖,𝑏𝐶

(𝐵𝑏𝐶
𝜔−𝑖,𝑦𝑖

)−1/2𝐵𝑏𝑛

𝜔−𝑖,𝑦𝑖
(𝐵𝑏𝐶

𝜔−𝑖,𝑦𝑖
)−1/2

where 𝑎𝑛|𝑎𝑖, 𝑎𝐶 (resp. 𝑏𝑛|𝑏𝑖, 𝑏𝐶) denotes summing over tuples 𝑎𝑛 that are consistent with 𝑎𝐶

and 𝑎𝑖 (resp. 𝑏𝑛 that are consistent with 𝑏𝐶 and 𝑏𝑖). Note that the {𝐴𝑎𝑖
𝜔−𝑖,𝑥𝑖

}𝑎𝑖
and {�̂�𝑏𝑖

𝜔−𝑖,𝑦𝑖
}𝑏𝑖

are positive semidefinite operators that sum to identity, so form valid POVMs.

Consider the following strategy to play game 𝐺. Alice and Bob share classical public

randomness, and for every setting of 𝑖, 𝜔−𝑖, 𝑧, the bipartite state |̃︀Φ𝜔−𝑖,𝑧
⊥,⊥
⟩. Upon receiving

questions 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴 respectively they perform the following:

1. Alice and Bob use public randomness to sample (𝑖, 𝜔−𝑖, 𝑧) conditioned on 𝑊𝐶 .

2. Alice applies 𝑈𝜔−𝑖,𝑧,𝑥 to her register of |̃︀Φ𝜔−𝑖,𝑧
⊥,⊥
⟩.

3. Bob applies 𝑉𝜔−𝑖,𝑧,𝑦 to his register of |̃︀Φ𝜔−𝑖,𝑧
⊥,⊥
⟩.

81



4. Alice measures with POVM operators {𝐴𝑎𝑖
𝜔−𝑖,𝑥
} and returns the outcome as her answer.

5. Bob measures with POVM operators {�̂�𝑏𝑖
𝜔−𝑖,𝑦
} and returns the outcome as his answer.

Suppose that, upon receiving questions (𝑥, 𝑦) and after jointly picking a uniformly random

𝑖 ∈ [𝑚], Alice and Bob could jointly sample 𝜔−𝑖, 𝑧 from PΩ−𝑖Z|𝑊𝐶
and locally prepare the state

|̃︀Φ𝜔−𝑖,𝑧
𝑥,𝑦
⟩. For a fixed (𝑥, 𝑦), 𝜔−𝑖 and 𝑧, the distribution of outcomes (𝑎𝑖, 𝑏𝑖) after measuring

{𝐴𝑎𝑖
𝜔−𝑖,𝑥
⊗ �̂�𝑏𝑖

𝜔−𝑖,𝑦
}𝑎𝑖,𝑏𝑖

will be identical to P𝐴𝑖𝐵𝑖|𝜔−𝑖,𝑧,𝑥,𝑦 (where we mean conditioning on 𝑋𝑖 = 𝑥

and 𝑌𝑖 = 𝑦). Averaging over (𝑥, 𝑦) ∼ 𝜇, 𝑖, 𝜔−𝑖, and 𝑧, the above-defined strategy will win

game 𝐺 with probability at least E𝑖 Pr(𝑊𝑖|𝑊𝐶).

Next we show that Alice and Bob are able to approximately prepare |̃︀Φ𝜔−𝑖,𝑧
𝑥,𝑦
⟩ with high

probability, and thus produce answers that are approximately distributed according to

P𝐴𝑖𝐵𝑖|𝜔−𝑖,𝑧,𝑥,𝑦, allowing them to win game 𝐺 with probability greater than 1− 𝜀 — a contra-

diction.

For the remainder of the proof, we will fix 𝐶 and implicitly carry it around. Let 𝛿 = 𝛿𝐶 .

We use the following lemma:

Lemma 4.10. For every 𝐶, 𝑖, 𝜔−𝑖, 𝑧 = (𝑎𝐶 , 𝑏𝐶), 𝑥𝑖 and 𝑦𝑖 there exists unitaries 𝑈𝜔−𝑖,𝑧,𝑥𝑖

acting on 𝐸𝐴 and 𝑉𝜔−𝑖,𝑧,𝑦𝑖
acting on 𝐸𝐵 such that

1
𝑚

∑︁
𝑖

E
𝑋𝑖𝑌𝑖

E
Ω−𝑖Z|𝑊

⃦⃦⃦⃦
(𝑈𝜔−𝑖,𝑧,𝑥𝑖

⊗ 𝑉𝜔−𝑖,𝑧,𝑦𝑖
)
⃒⃒⃒⃒ ̃︀Φ𝜔−𝑖,𝑧

⊥,⊥

⟩
−
⃒⃒⃒⃒ ̃︀Φ𝜔−𝑖,𝑧

𝑥𝑖,𝑦𝑖

⟩ ⃦⃦⃦⃦2
= 𝑂(𝛿1/4/𝛼4).

The proof of Lemma 4.10 is given in Section 4.4.2, and we assume it for now. Using the

fact that for two pure states |𝜓⟩ and |𝜑⟩, ‖𝜓 − 𝜑‖1 ≤
√

2‖ |𝜓⟩ − |𝜑⟩‖, as well as Jensen’s

inequality,

E
𝑖

E
𝑋𝑌

E
Ω−𝑖Z|𝑊𝐶

⃦⃦⃦⃦
(𝑈𝜔−𝑖,𝑧,𝑥 ⊗ 𝑉𝜔−𝑖,𝑧,𝑦)

[︂̃︀Φ𝜔−𝑖,𝑧
⊥,⊥

]︂
− ̃︀Φ𝜔−𝑖,𝑧

𝑥,𝑦

⃦⃦⃦⃦
1

= 𝑂
(︂
𝛿1/8

𝛼2

)︂
, (4.7)

where the second expectation is over (𝑥, 𝑦) drawn from 𝜇, and (𝑈 ⊗ 𝑉 )[̃︀Φ] denotes (𝑈 ⊗

𝑉 )̃︀Φ(𝑈 ⊗ 𝑉 )†. Conditioned on a given pair of questions (𝑥, 𝑦) and the players sampling

(𝑖, 𝜔−𝑖, 𝑧) in Step 1., the state that the players prepare after Step 3. in the protocol is precisely

(𝑈𝜔−𝑖,𝑧,𝑥⊗𝑉𝜔−𝑖,𝑧,𝑦)[̃︀Φ𝜔−𝑖,𝑧
⊥,⊥

]. Let ℰ𝜔−𝑖,𝑧
𝑥,𝑦

denote the quantum-classical channel on density matrices

that performs the measurement {𝐴𝑎𝑖
𝜔−𝑖,𝑥

⊗ �̂�𝑏𝑖
𝜔−𝑖,𝑦
}𝑎𝑖,𝑏𝑖

, and outputs a classical register with
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the measurement outcome (𝑎𝑖, 𝑏𝑖). Applying ℰ𝜔−𝑖,𝑧
𝑥,𝑦

to the expression inside the trace norm

in (4.7), using that the trace norm is non-increasing under quantum operations,

E
𝑖

E
𝑋𝑌

E
Ω−𝑖𝑍|𝑊𝐶

⃦⃦⃦̃︀P𝐴𝑖𝐵𝑖|𝜔−𝑖,𝑣,𝑥,𝑦 − P𝐴𝑖𝐵𝑖|𝜔−𝑖,𝑣,𝑥,𝑦

⃦⃦⃦
≤ 𝑂(𝛿1/8/𝛼2).

where ̃︀P𝐴𝑖𝐵𝑖|𝜔𝑖,𝑧,𝑥,𝑦(𝑎𝑖, 𝑏𝑖) deontes the probability of outcome (𝑎𝑖, 𝑏𝑖) in the above strategy,

conditioned on questions (𝑥, 𝑦) and the players sampling (𝑖, 𝜔−𝑖, 𝑧) in Step 1. Thus

P𝐼 · PΩ−𝑖Z|𝑊𝐶
· P𝑋𝑌 · ̃︀P𝐴𝑖𝐵𝑖|Ω−𝑖Z𝑋𝑖𝑌𝑖

≈𝑂(𝛿1/8/𝛼2) P𝐼 · PΩ−𝑖Z|𝑊𝐶
· P𝑋𝑌 · P𝐴𝑖𝐵𝑖|Ω−𝑖Z𝑋𝑖𝑌𝑖

≈𝑂(𝛿1/8/𝛼2) P𝐼 · PΩ−𝑖Z𝑋𝑖𝑌𝑖|𝑊𝐶
· P𝐴𝑖𝐵𝑖|Ω−𝑖Z𝑋𝑖𝑌𝑖

where the 𝑋𝑖𝑌𝑖 in the conditionals is shorthand for 𝑋𝑖 = 𝑥, 𝑌𝑖 = 𝑦. The last approximate

equality follows from Lemma 4.8. Marginalizing Ω−𝑖Z, we get

P𝐼 · P𝑋𝑌 · ̃︀P𝐴𝑖𝐵𝑖|𝑋𝑖𝑌𝑖
≈𝑂(𝛿1/8/𝛼2) P𝐼 · P𝑋𝑖𝑌𝑖𝐴𝑖𝐵𝑖|𝑊𝐶

. (4.8)

Under the distribution P𝑋𝑖𝑌𝑖𝐴𝑖𝐵𝑖|𝑊𝐶
, the probability that 𝑉 (𝑥𝑖, 𝑦𝑖, 𝑎𝑖, 𝑏𝑖) = 1 is precisely

Pr(𝑊𝑖|𝑊𝐶). On the other hand, (4.8) implies that using the protocol described above the

players win 𝐺 with probability at least E𝑖 Pr(𝑊𝑖|𝑊𝐶)−𝑂(𝛿1/8/𝛼2). This concludes the proof

of the lemma.

Given Lemma 4.9, the proof of Theorem 4.7 (at least the two player case) follows using a

standard inductive argument (see, e.g., the argument for Theorem 4.17 given in Section 4.5).

Later, in Section 4.4.3, we sketch the changes necessary to adapt the proof to handle an

arbitrary number of players.

Proof of the main lemma

This section is devoted to the proof of Lemma 4.10. The proof is based on two lemmas. The

first defines the required unitaries.

Lemma 4.11. For all 𝑖, 𝜔−𝑖, 𝑧, 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴 there exists unitaries 𝑈𝜔−𝑖𝑧𝑥 acting on 𝐸𝐴
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and 𝑉𝜔−𝑖𝑧𝑦, 𝑉𝜔−𝑖,𝑧
𝑥,𝑦

acting on 𝐸𝐵 such that

1
𝑚

∑︁
𝑖

E
Ω−𝑖Z|𝑊

E
𝑋

⃦⃦⃦⃒⃒⃒ ̃︀Φ𝑥,⊥

⟩
− 𝑈𝜔−𝑖𝑧𝑥

⃒⃒⃒ ̃︀Φ⊥,⊥

⟩⃦⃦⃦2
= 𝑂(𝛿1/4/𝛼2), (4.9)

1
𝑚

∑︁
𝑖

E
Ω−𝑖Z|𝑊

E
𝑌

⃦⃦⃦
𝑉𝜔−𝑖𝑧𝑦

⃒⃒⃒ ̃︀Φ⊥,⊥

⟩
−
⃒⃒⃒ ̃︀Φ⊥,𝑦

⟩⃦⃦⃦2
= 𝑂(𝛿1/4/𝛼2), (4.10)

1
𝑚

∑︁
𝑖

E
Ω−𝑖Z|𝑊

E
𝑋𝑌

⃦⃦⃦⃦
𝑉𝜔−𝑖,𝑧

𝑥,𝑦

⃒⃒⃒ ̃︀Φ⊥/𝑥,𝑦

⟩
−
⃒⃒⃒ ̃︀Φ⊥/𝑥,⊥

⟩⃦⃦⃦⃦2
= 𝑂(𝛿1/4/𝛼4). (4.11)

where E𝑋 , E𝑌 , and E𝑋𝑌 denote averaging over 𝜇(𝑥), 𝜇(𝑦), and 𝜇(𝑥, 𝑦) respectively.

The proof of Lemma 4.11 is given in Section 4.4.2. The second lemma relates the

normalization factors 𝛾𝑥,𝑦, 𝛾𝑥,⊥, 𝛾⊥,𝑦, 𝛾⊥/𝑥,𝑦, 𝛾⊥/𝑥,⊥, 𝛾⊥,⊥ that appear in the definition of the

corresponding normalized states |̃︀Φ⟩.
Lemma 4.12. There exists a set 𝑆 of triples (𝑖, 𝜔−𝑖, 𝑧) that has probability 1− 𝛿1/4 under

P𝐼 · PΩ−𝑖Z|𝑊 such that

1
𝑚

∑︁
𝑥,𝑦

(𝑖,𝜔−𝑖,𝑧)∈𝑆

P𝑋𝑌 (𝑥, 𝑦) · PΩ−𝑖Z|𝑊 (𝜔−𝑖, 𝑣)
⃒⃒⃒⃒
𝛾2
𝜔−𝑖,𝑧
𝑥,𝑦
− 𝛾2

𝜔−𝑖,𝑧
⊥,⊥

⃒⃒⃒⃒
= 𝑂

(︁
𝛿1/4/𝛼2

)︁
𝛾2, (4.12)

where

𝛾 =
(︂ 1
𝑚

∑︁
𝑖

∑︁
𝑥,𝑦,𝜔−𝑖,𝑧

P𝑋𝑌 (𝑥, 𝑦) · PΩ−𝑖Z|𝑊 (𝜔−𝑖, 𝑧) · 𝛾2
𝜔−𝑖,𝑧
𝑥,𝑦

)︂1/2
.

Furthermore, similar bounds as (4.12) hold where 𝛾𝜔−𝑖,𝑧
𝑥,𝑦

is replaced by any of 𝛾𝜔−𝑖,𝑧
𝑥,⊥

, 𝛾𝜔−𝑖,𝑧
⊥,𝑦

,

𝛾𝜔−𝑖,𝑧
⊥/𝑥,𝑦

, 𝛾𝜔−𝑖,𝑧
⊥/𝑥,⊥

.

The proof of Lemma 4.12 uses the following claim.

Claim 4.13.

1
𝑚

∑︁
𝑖

∑︁
𝑥,𝑦,(𝜔−𝑖,𝑧)∈𝑊

P𝑋𝑌 (𝑥, 𝑦)
⃦⃦⃦
PΩ−𝑖Z|𝑋𝑖=𝑥,𝑌𝑖=𝑦(𝜔−𝑖, 𝑧)− PΩ−𝑖Z|𝑋𝑖∈⊥,𝑌𝑖∈⊥(𝜔−𝑖, 𝑧)

⃦⃦⃦
= 𝑂

(︂√
𝛿

𝛼2

)︂
Pr(𝑊 ).

Proof. First note that

1
𝑚

∑︁
𝑖

∑︁
𝑥,𝑦

P𝑋𝑌 (𝑥, 𝑦) |Pr(𝑊 |𝑋𝑖 = 𝑥, 𝑌𝑖 = 𝑦)− Pr(𝑊 )| = Pr(𝑊 )
𝑚

∑︁
𝑖

⃦⃦⃦
P𝑋𝑖𝑌𝑖|𝑊 − P𝑋𝑖𝑌𝑖

⃦⃦⃦
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= 𝑂(
√
𝛿) Pr(𝑊 ), (4.13)

where the second equality follows from Lemma 4.8. Using the triangle inequality and

Pr(𝑋𝑖 ∈ ⊥, 𝑌𝑖 ∈ ⊥) ≥ 𝛼2 we also get

1
𝑚

∑︁
𝑖

∑︁
𝑥,𝑦

P𝑋𝑌 (𝑥, 𝑦) |Pr(𝑊 |𝑋𝑖 = 𝑥, 𝑌𝑖 = 𝑦)− Pr(𝑊 |𝑋𝑖 ∈ ⊥, 𝑌𝑖 ∈ ⊥)| = 𝑂(
√
𝛿/𝛼2) Pr(𝑊 ).

(4.14)

Using (4.13) and letting PΩ−𝑖Z|𝑥,𝑦,𝑊 denote PΩ−𝑖Z|𝑋𝑖=𝑥,𝑌𝑖=𝑦,𝑊 ,

1
𝑚

∑︁
𝑖

∑︁
𝑥,𝑦

P𝑋𝑌 (𝑥, 𝑦)
∑︁

(𝜔−𝑖,𝑧)∈𝑊

⃦⃦⃦
Pr(𝑊 ) · PΩ−𝑖Z|𝑥,𝑦,𝑊 (𝜔−𝑖, 𝑧)− PΩ−𝑖Z|𝑥,𝑦(𝜔−𝑖, 𝑧)

⃦⃦⃦

≈𝑂(
√
𝛿) Pr(𝑊 )

1
𝑚

∑︁
𝑖

∑︁
𝑥,𝑦

P𝑋𝑌 (𝑥, 𝑦)
∑︁

(𝜔−𝑖,𝑧)∈𝑊

⃦⃦⃦
PΩ−𝑖Z∧𝑊 |𝑥,𝑦(𝜔−𝑖, 𝑧)− PΩ−𝑖Z|𝑥,𝑦(𝜔−𝑖, 𝑧)

⃦⃦⃦

= 0.

A similar derivation proves

1
𝑚

∑︁
𝑖

∑︁
(𝜔−𝑖,𝑧)∈𝑊

⃦⃦⃦
Pr(𝑊 ) · PΩ−𝑖Z|𝑋𝑖∈⊥,𝑌𝑖∈⊥,𝑊 (𝜔−𝑖, 𝑧)− PΩ−𝑖Z|𝑋𝑖∈⊥,𝑌𝑖∈⊥(𝜔−𝑖, 𝑧)

⃦⃦⃦
= 𝑂(

√
𝛿) Pr(𝑊 ).

Combining the previous two bounds with the bound

1
𝑚

∑︁
𝑖

Pr(𝑊 )‖P𝑋𝑖𝑌𝑖
PΩ−𝑖Z|𝑋𝑖∈⊥,𝑌𝑖∈⊥,𝑊 − P𝑋𝑖𝑌𝑖

PΩ−𝑖Z|𝑋𝑖𝑌𝑖𝑊‖ ≤ 𝑂(
√
𝛿/𝛼2) Pr(𝑊 )

from Lemma 4.8 with the triangle inequality proves the claim.

Proof of Lemma 4.12. For any 𝑖, 𝑥, 𝑦 and (𝜔−𝑖, 𝑧) ∈ 𝑊 write

P𝑋𝑌 (𝑥, 𝑦) · PΩ−𝑖Z|𝑊 (𝜔−𝑖, 𝑧) · 𝛾2
𝜔−𝑖,𝑧
𝑥,𝑦

= 1
Pr(𝑊 )P𝑋𝑌 (𝑥, 𝑦) · PΩ−𝑖Z(𝜔−𝑖, 𝑧) · 𝛾2

𝜔−𝑖,𝑧
𝑥,𝑦

= 1
Pr(𝑊 )P𝑋𝑌 (𝑥, 𝑦) · PΩ−𝑖|𝑥,𝑦(𝜔−𝑖) · PZ|𝜔−𝑖

(𝑧) · 𝛾2
𝜔−𝑖,𝑧
𝑥,𝑦

,
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where for the last equality we used PΩ−𝑖|𝑋𝑖𝑌𝑖
= PΩ−𝑖

. From the definition, 𝛾2
𝜔−𝑖,𝑧
𝑥,𝑦

= PZ|𝜔−𝑖,𝑥,𝑦(𝑧),

= 1
Pr(𝑊 )P𝑋𝑌 (𝑥, 𝑦) · PZ|𝜔−𝑖

(𝑧) · PΩ−𝑖Z|𝑥,𝑦(𝜔−𝑖, 𝑧), (4.15)

where PΩ−𝑖Z|𝑥,𝑦(𝜔−𝑖, 𝑧) denotes PΩ−𝑖Z|𝑋𝑖=𝑥,𝑌𝑖=𝑦(𝜔−𝑖, 𝑧). Similarly, we have

P𝑋𝑌 (𝑥, 𝑦) · PΩ−𝑖Z|𝑊 (𝜔−𝑖, 𝑧) · 𝛾2
𝜔−𝑖,𝑧

⊥,⊥
= 1

Pr(𝑊 )P𝑋𝑌 (𝑥, 𝑦) · PZ|𝜔−𝑖
(𝑧) · PΩ−𝑖Z|⊥,⊥(𝜔−𝑖, 𝑧). (4.16)

By definition

𝛾2 = 1
𝑚

∑︁
𝑖,𝜔−𝑖,𝑧

PΩ−𝑖Z|𝑊 (𝜔−𝑖, 𝑧) · P𝑉 |𝜔−𝑖
(𝑧),

thus for any 𝜂 > 0 applying Markov’s inequality a fraction at least 1 − 𝜂 of (𝑖, 𝜔−𝑖, 𝑧)

distributed according to P𝐼 ·PΩ−𝑖Z|𝑊 are such that PZ|𝜔−𝑖
(𝑧) ≤ 𝛾2/𝜂. Let 𝑆 be the set of such

triples, and consider summing the difference

P𝑋𝑌 (𝑥, 𝑦) · PZ|𝜔−𝑖
(𝑧) ·

⃒⃒⃒
PΩ−𝑖Z|𝑥,𝑦(𝜔−𝑖, 𝑧)− PΩ−𝑖Z|⊥,⊥(𝜔−𝑖, 𝑧)

⃒⃒⃒

over all (𝑥, 𝑦) and (𝑖, 𝜔−𝑖, 𝑧) ∈ 𝑆. By lines (4.15) and (4.16), and applying Claim 4.13 we

obtain

1
𝑚

∑︁
𝑥,𝑦

(𝑖,𝜔−𝑖,𝑧)∈𝑆

P𝑋𝑌 (𝑥, 𝑦) · PΩ−𝑖𝑍|𝑊 (𝜔−𝑖, 𝑧) ·
⃒⃒⃒⃒
𝛾2
𝜔−𝑖,𝑧
𝑥,𝑦
− 𝛾2

𝜔−𝑖,𝑧
⊥,⊥

⃒⃒⃒⃒
≤ 𝛾2

𝜂
𝑂
(︂√

𝛿

𝛼2

)︂
.

Choosing 𝜂 = 𝛿1/4 proves the lemma.

Proof of Lemma 4.10. For every (𝑖, 𝜔−𝑖, 𝑧), 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴 let unitaries 𝑈𝜔−𝑖𝑧𝑥, 𝑉𝜔−𝑖𝑧𝑦 and

𝑉𝜔−𝑖,𝑧
𝑥,𝑦

be as in Lemma 4.11. For notational convenience we suppress the dependence on

(𝑖, 𝜔−𝑖, 𝑧) when it is clear from context. Call triples (𝑖, 𝜔−𝑖, 𝑧) that satisfy the conclusion of

Lemma 4.12 for 𝛾𝜔−𝑖,𝑧
𝑥,𝑦

, 𝛾𝜔−𝑖,𝑧
𝑥,⊥

, 𝛾𝜔−𝑖,𝑧
⊥,𝑦

, 𝛾𝜔−𝑖,𝑧
⊥/𝑥,𝑦

, and 𝛾𝜔−𝑖,𝑧
⊥/𝑥,⊥

simutaneously good triples, and let 𝑆

denote the set of good triples. Fix (𝑖, 𝜔−𝑖, 𝑧) ∈ 𝑆. Using |𝑎− 𝑏|2 ≤ |𝑎2 − 𝑏2| for 𝑎, 𝑏 ≥ 0,

∑︁
𝑥,𝑦

P𝑋𝑌 (𝑥, 𝑦) ·
⃦⃦⃦
|̃︀Φ𝑥,𝑦⟩ − 𝛾−1|Φ𝑥,𝑦⟩

⃦⃦⃦2
=
∑︁
𝑥,𝑦

P𝑋𝑌 (𝑥, 𝑦) ·
⃒⃒⃒⃒
⃒𝛾 − 𝛾

𝜔−𝑖,𝑧
𝑥,𝑦

𝛾

⃒⃒⃒⃒
⃒
2
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≤
∑︁
𝑥,𝑦

P𝑋𝑌 (𝑥, 𝑦) ·

⃒⃒⃒⃒
⃒⃒𝛾

2 − 𝛾2
𝜔−𝑖,𝑧
𝑥,𝑦

𝛾2

⃒⃒⃒⃒
⃒⃒

= 𝑂(𝛿1/4/𝛼2), (4.17)

and similar bounds hold for |̃︀Φ𝑥,⊥⟩, |̃︀Φ⊥,𝑦⟩ and |̃︀Φ⊥,⊥⟩. Thus to prove the theorem it will be

sufficient to establish that

1
𝑚

∑︁
𝑥,𝑦

(𝑖,𝜔−𝑖,𝑧)∈𝑆

P𝑋𝑌 (𝑥, 𝑦) · PΩ−𝑖,Z|𝑊 (𝜔−𝑖, 𝑧) · ‖(𝑈𝑥 ⊗ 𝑉𝑦) |Φ⊥,⊥⟩ − |Φ𝑥,𝑦⟩‖2 = 𝑂
(︂
𝛿1/4

𝛼2

)︂
𝛾2. (4.18)

Using the lower bound on the measure of 𝑆,

1
𝑚

∑︁
𝑥,𝑦

𝑖,𝜔−𝑖,𝑣

P𝑋𝑌 (𝑥, 𝑦) · PΩ−𝑖,𝑉 |𝑊 (𝜔−𝑖, 𝑣) ·
⃦⃦⃦
(𝑈𝑥 ⊗ 𝑉𝑦)

⃒⃒⃒ ̃︀Φ⊥,⊥

⟩
−
⃒⃒⃒ ̃︀Φ𝑥,𝑦

⟩⃦⃦⃦2

≤ 1
𝑚

∑︁
𝑥,𝑦

(𝑖,𝜔−𝑖,𝑣)∈𝑆

P𝑋𝑌 (𝑥, 𝑦) · PΩ−𝑖,𝑉 |𝑊 (𝜔−𝑖, 𝑣) ·
⃦⃦⃦
(𝑈𝑥 ⊗ 𝑉𝑦)

⃒⃒⃒ ̃︀Φ⊥,⊥

⟩
−
⃒⃒⃒ ̃︀Φ𝑥,𝑦

⟩⃦⃦⃦2
+𝑂(𝛿1/4)

For each good triple (𝑖, 𝜔−𝑖, 𝑧), by the triangle inequality

⃦⃦⃦
(𝑈𝑥 ⊗ 𝑉𝑦)

⃒⃒⃒ ̃︀Φ⊥,⊥

⟩
−
⃒⃒⃒ ̃︀Φ𝑥,𝑦

⟩⃦⃦⃦2
≤ 3

⃦⃦⃦⃒⃒⃒ ̃︀Φ⊥,⊥

⟩
− 𝛾−1 |Φ⊥,⊥⟩

⃦⃦⃦2
+ 3

⃦⃦⃦⃒⃒⃒ ̃︀Φ𝑥,𝑦

⟩
− 𝛾−1 |Φ𝑥,𝑦⟩

⃦⃦⃦2

+ 3𝛾−2 ‖(𝑈𝑥 ⊗ 𝑉𝑦) |Φ⊥,⊥⟩ − |Φ𝑥,𝑦⟩‖2

≤ 3𝛾−2 ‖(𝑈𝑥 ⊗ 𝑉𝑦) |Φ⊥,⊥⟩ − |Φ𝑥,𝑦⟩‖2 +𝑂(𝛿1/4/𝛼2).

Using (4.17), the bounds stated in Lemma 4.11 imply the following bounds on the un-

normalized vectors:

1
𝑚

∑︁
𝑥

(𝑖,𝜔−𝑖,𝑧)∈𝑆

P𝑋(𝑥) · PΩ−𝑖Z|𝑊 (𝜔−𝑖, 𝑧) ·
⃦⃦⃦
|Φ𝑥,⊥⟩ − 𝑈𝜔−𝑖𝑧𝑥 |Φ⊥,⊥⟩

⃦⃦⃦2
= 𝑂

(︂
𝛿1/4

𝛼2

)︂
𝛾2, (4.19)

1
𝑚

∑︁
𝑦

(𝑖,𝜔−𝑖,𝑧)∈𝑆

P𝑌 (𝑦) · PΩ−𝑖Z|𝑊 (𝜔−𝑖, 𝑧) ·
⃦⃦⃦
𝑉𝜔−𝑖𝑧𝑦 |Φ⊥,⊥⟩ − |Φ⊥,𝑦⟩

⃦⃦⃦2
= 𝑂

(︂
𝛿1/4

𝛼2

)︂
𝛾2, (4.20)

1
𝑚

∑︁
𝑥,𝑦

(𝑖,𝜔−𝑖,𝑧)∈𝑆

P𝑋𝑌 (𝑥, 𝑦) · PΩ−𝑖Z|𝑊 (𝜔−𝑖, 𝑧) ·
⃦⃦⃦⃦
𝑉𝜔−𝑖,𝑧

𝑥,𝑦

⃒⃒⃒
Φ⊥/𝑥,𝑦

⟩
−
⃒⃒⃒
Φ⊥/𝑥,⊥

⟩⃦⃦⃦⃦2
= 𝑂

(︂
𝛿1/4

𝛼4

)︂
𝛾2. (4.21)
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We show how to combine these bounds to establish (4.18). We have

‖𝑈𝑥|Φ⊥,𝑦⟩ − |Φ𝑥,𝑦⟩‖2 =
⃦⃦⃦
𝑈𝑥𝐴

1/2
⊥ 𝐴

−1/2
⊥/𝑥 |Φ⊥/𝑥,𝑦⟩ − 𝐴1/2

𝑥 𝐴
−1/2
⊥/𝑥 |Φ⊥/𝑥,𝑦⟩

⃦⃦⃦2

=
⃦⃦⃦
𝑈𝑥𝐴

1/2
⊥ 𝐴

−1/2
⊥/𝑥 ⊗ 𝑉𝑥𝑦|Φ⊥/𝑥,𝑦⟩ − 𝐴1/2

𝑥 𝐴
−1/2
⊥/𝑥 ⊗ 𝑉𝑥𝑦|Φ⊥/𝑥,𝑦⟩

⃦⃦⃦2
.

Using the triangle inequality again,

≤ 3
⃦⃦⃦(︁
𝑈𝑥𝐴

1/2
⊥ 𝐴

−1/2
⊥/𝑥

)︁
⊗ 𝑉𝑥𝑦|Φ⊥/𝑥,𝑦⟩ −

(︁
𝑈𝑥𝐴

1/2
⊥ 𝐴

−1/2
⊥/𝑥

)︁
|Φ⊥/𝑥,⊥⟩

⃦⃦⃦2
(4.22)

+ 3
⃦⃦⃦(︁
𝑈𝑥𝐴

1/2
⊥ 𝐴

−1/2
⊥/𝑥

)︁
|Φ⊥/𝑥,⊥⟩ − 𝐴1/2

𝑥 𝐴
−1/2
⊥/𝑥 |Φ⊥/𝑥,⊥⟩

⃦⃦⃦2
(4.23)

+ 3
⃦⃦⃦
𝐴1/2
𝑥 𝐴

−1/2
⊥/𝑥 |Φ⊥/𝑥,⊥⟩ − 𝐴1/2

𝑥 𝐴
−1/2
⊥/𝑥 ⊗ 𝑉𝑥𝑦|Φ⊥/𝑥,𝑦⟩

⃦⃦⃦2
. (4.24)

Using ‖𝑈𝑥𝐴1/2
⊥ 𝐴

−1/2
⊥/𝑥 ‖ ≤

√
2 the term (4.22) can be bounded as

⃦⃦⃦(︁
𝑈𝑥𝐴

1/2
⊥ 𝐴

−1/2
⊥/𝑥

)︁
⊗ 𝑉𝑥𝑦 |Φ⊥/𝑥,𝑦⟩ −

(︁
𝑈𝑥𝐴

1/2
⊥ 𝐴

−1/2
⊥/𝑥

)︁
|Φ⊥/𝑥,⊥⟩

⃦⃦⃦2
≤ 2

⃦⃦⃦
𝑉𝑥𝑦|Φ⊥/𝑥,𝑦⟩ − |Φ⊥/𝑥,⊥⟩

⃦⃦⃦2
.

The term (4.23) can be re-written as

⃦⃦⃦(︁
𝑈𝑥𝐴

1/2
⊥ 𝐴

−1/2
⊥/𝑥

)︁
|Φ⊥/𝑥,⊥⟩ − 𝐴1/2

𝑥 𝐴
−1/2
⊥/𝑥 |Φ⊥/𝑥,⊥⟩

⃦⃦⃦2
= ‖𝑈𝑥|Φ⊥,⊥⟩ − |Φ𝑥,⊥⟩‖2 .

Finally, using ‖𝐴1/2
𝑥 𝐴

−1/2
⊥/𝑥 ‖ ≤

√
2 the term (4.24) can be bounded as

⃦⃦⃦
𝐴1/2
𝑥 𝐴

−1/2
⊥/𝑥 |Φ⊥/𝑥,⊥⟩ − 𝐴1/2

𝑥 𝐴
−1/2
⊥/𝑥 ⊗ 𝑉𝑥𝑦 |Φ⊥/𝑥,𝑦⟩

⃦⃦⃦2
≤ 2

⃦⃦⃦
|Φ⊥/𝑥,⊥⟩ − 𝑉𝑥𝑦 |Φ⊥/𝑥,𝑦⟩

⃦⃦⃦2
.

Putting the three bounds together, from (4.24) we get

‖𝑈𝑥|Φ⊥,𝑦⟩ − |Φ𝑥,𝑦⟩‖2 ≤ 3
⃦⃦⃦
𝑉𝑥𝑦|Φ⟩⊥/𝑥,𝑦 − |Φ⊥/𝑥,⊥⟩

⃦⃦⃦2
+ 3 ‖𝑈𝑥|Φ⊥,⊥⟩ − |Φ𝑥,⊥⟩‖2 . (4.25)

Using that 𝑈𝑥 is unitary,

‖(𝑈𝑥 ⊗ 𝑉𝑦)|Φ⊥,⊥⟩ − |Φ𝑥,𝑦⟩‖2 ≤ 2 ‖𝑉𝑦|Φ⊥,⊥⟩ − |Φ⊥,𝑦⟩‖2 + 2 ‖𝑈𝑥|Φ⊥,𝑦⟩ − |Φ𝑥,𝑦⟩‖2

≤ 18
⃦⃦⃦
𝑉𝑥𝑦|Φ⊥/𝑥,𝑦⟩ − |Φ⊥/𝑥,⊥⟩

⃦⃦⃦2
+ 6 ‖𝑈𝑥|Φ⊥,⊥⟩ − |Φ𝑥,⊥⟩‖2
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+ 2 ‖𝑉𝑦|Φ⊥,⊥⟩ − |Φ⊥,𝑦⟩‖2 ,

where the last inequality is (4.25). Eqs. (4.19), (4.20) and (4.21) bound the three terms above

by 𝑂(𝛿1/4/𝛼4)𝛾2 on average over (𝑥, 𝑦) weighted by P𝑋𝑌 , and (𝑖, 𝜔−𝑖, 𝑧) ∈ 𝑆, weighted by

P𝐼 · PΩ−𝑖Z|𝑊 . This proves (4.18), and the theorem follows.

Obtaining local unitaries

In this section we give the proof of Lemma 4.11, which states the existence of the local unitary

transformations needed for the proof of Theorem 4.7.

Proof of Lemma 4.11. Recall that we let the entangled state |𝜓⟩ and POVMs {𝐴𝑎𝑛

𝑥𝑛} and

{𝐵𝑏𝑛

𝑥𝑛} constitute an optimal strategy for 𝐺⊗𝑛. We refer the reader to Section 4.4.1 for the

definitions of operators 𝐴𝑎𝐶
𝜔 , etc. We will let 𝜌 denote the reduced density matrix of |𝜓⟩ on

either system (this is well-defined because we’ve assumed |𝜓⟩ is symmetric).

We first prove (4.10), that is, the existence of the unitary 𝑉𝜔−𝑖𝑧𝑦𝑖
. Recall the notation

𝜓 = |𝜓⟩⟨𝜓| and 𝑋[𝜌] = 𝑋𝜌𝑋†. Introduce the following states:

ΞΩ𝑌 𝑛𝐸𝐴𝐸𝐵Z =
∑︁

𝜔,𝑦𝑛,𝑎𝐶 ,𝑏𝐶

PΩ𝑌 𝑛(𝜔, 𝑦𝑛) |𝜔 𝑦𝑛⟩⟨𝜔 𝑦𝑛| ⊗
(︂√︁

𝐴𝑎𝐶
𝜔 ⊗

√︁
𝐵𝑏𝐶
𝑦𝑛

)︂
[𝜓]⊗ |𝑎𝐶𝑏𝐶⟩⟨𝑎𝐶𝑏𝐶 |,

𝜉Ω𝑌 𝑛𝐸𝐴𝐸𝐵Z = ΞΩ𝑌 𝑛𝐸𝐴𝐸𝐵Z|𝑊 , (4.26)

𝜉𝐸𝐴
𝜔−𝑖,𝑧
⊥,𝑦𝑖

= 𝜉𝐸𝐴|Ω−𝑖=𝜔−𝑖,𝑌𝑖=𝑦𝑖,𝜔𝑖=(𝐴,⊥). (4.27)

The state Ξ is defined so that tracing out the entanglement registers 𝐸𝐴 and 𝐸𝐵 the resulting

state ΞΩ𝑌 𝑛𝐴𝐶𝐵𝐶
is a classical state that is equivalent to the probability distribution PΩ𝑌 𝑛𝐴𝐶𝐵𝐶

.

In (4.26) the conditioning on 𝑊 is well-defined since the event only involves classical random

variables in Ω and 𝑍. In (4.27) only the reduced density on 𝐸𝐴 is considered, all other

registers being traced out.

The following claim provides the main step of the proof by relating the reduced densities

on Alice’s registers of states (4.27) associated with different choices for 𝑦𝑖.
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Claim 4.14.

1
𝑚

∑︁
𝑖

E
Ω−𝑖Z|𝑊

E
𝑌𝑖

⃦⃦⃦⃦
𝜉𝐸𝐴
𝜔−𝑖,𝑧
⊥,𝑦𝑖

− 𝜉𝐸𝐴
𝜔−𝑖,𝑧

⊥,⊥

⃦⃦⃦⃦2

1
= 𝑂

(︁√
𝛿/𝛼2

)︁
(4.28)

Proof. First we observe that Pr(𝑊 )𝜉 ⪯ Ξ, thus by definition 𝑆(𝜉‖Ξ) ≤ 𝑆∞(𝜉‖Ξ) ≤

log 1/Pr(𝑊 ). Using the chain rule for the relative entropy (Lemma 2.8),

E
Ω𝑉 |𝑊

𝑆(𝜉𝑌 𝑛𝐸𝐴
𝜔,𝑧 ‖Ξ𝑌 𝑛𝐸𝐴

𝜔,𝑧 ) ≤ log 1
Pr(𝑊 ) . (4.29)

Next we note that for any 𝜔, using Ando’s identity

⟨𝜓|𝑋 ⊗ 𝑌 |𝜓⟩ = Tr(𝑋√𝜌𝑌 ⊤√𝜌),

where |𝜓⟩ = ∑︀√︁
𝜆𝑗|𝑣𝑗⟩|𝑣𝑗⟩, 𝜌 = ∑︀

𝜆𝑗|𝑣𝑗⟩⟨𝑣𝑗|, 𝑋, 𝑌 are any linear operators and the transpose

is taken with respect to the orthonormal basis {|𝑣𝑗⟩},

Ξ𝑌 𝑛𝐸𝐴𝐴𝐶𝐵𝐶
𝜔 =

∑︁
𝑦𝑛,𝑎𝐶 ,𝑏𝐶

P𝑌 𝑛|𝜔(𝑦𝑛) |𝑦𝑛⟩⟨𝑦𝑛| ⊗
√︁
𝐴𝑎𝐶
𝜔

√
𝜌𝐵

𝑏𝐶

𝑦𝑛

√
𝜌
√︁
𝐴𝑎𝐶
𝜔 ⊗ |𝑎𝐶𝑏𝐶⟩⟨𝑎𝐶𝑏𝐶 |

⪯
∑︁

𝑦𝑛,𝑎𝐶 ,𝑏𝐶

P𝑌 𝑛|𝜔(𝑦𝑛) |𝑦𝑛⟩⟨𝑦𝑛| ⊗
√︁
𝐴𝑎𝐶
𝜔

√
𝜌𝐵

𝑏𝐶

𝑥𝑛

√
𝜌
√︁
𝐴𝑎𝐶
𝜔 ⊗ I

=
∑︁
𝑦𝑛,𝑎𝐶

P𝑌 𝑛|𝜔(𝑦𝑛) |𝑦𝑛⟩⟨𝑦𝑛| ⊗
√︁
𝐴𝑎𝐶
𝜔 𝜌

√︁
𝐴𝑎𝐶
𝜔 ⊗ I, (4.30)

where the last equality uses ∑︀𝑏𝐶
𝐵𝑏𝐶
𝑦𝑛 = I. From (4.30) and the definition of 𝑆∞ it follows

that 𝑆∞(Ξ𝑌 𝑛𝐸𝐴
𝜔 ‖Ξ𝑌 𝑛

𝜔 ⊗ Ξ𝐸𝐴
𝜔 ) ≤ |𝐶| · log |𝒜||ℬ|. Applying Lemma 2.9,

1
𝑚

∑︁
𝑖

E
ΩZ|𝑊

𝐼(𝑌𝑖;𝐸𝐴|𝜔, 𝑧)𝜉 ≤
1
𝑚

E
ΩZ|𝑊

𝑆(𝜉𝑌 𝑛𝐸𝐴
𝜔,𝑧 ‖Ξ𝑌 𝑛

𝜔,𝑧 ⊗ Ξ𝐸𝐴
𝜔,𝑧)

≤ 1
𝑚

(︂
E

ΩZ|𝑊
𝑆(𝜉𝑌 𝑛𝐸𝐴

𝜔,𝑧 ‖Ξ𝑌 𝑛𝐸𝐴
𝜔,𝑧 ) + E

ΩZ|𝑊
𝑆∞(Ξ𝑌 𝑛𝐸𝐴

𝜔,𝑧 ‖Ξ𝑌 𝑛

𝜔,𝑧 ⊗ Ξ𝐸𝐴
𝜔,𝑧)

)︂
≤ 1
𝑚

(︂
log 1

Pr(𝑊 ) + |𝐶| · log |𝒜||ℬ|
)︂

= 𝛿 (4.31)

where in the last line the first term is bounded using (4.29) and the second using (4.30).
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Applying Lemma 4.8,

E
𝑖

P𝐷𝑖𝑀𝑖|𝑊 (𝐴, ⊥) ≈𝑂(
√
𝛿) E𝑖 P𝐷𝑖𝑀𝑖

(𝐴, ⊥) = 𝛼

2 ,

thus from (4.31) by conditioning on Ω𝑖 = (𝐴, ⊥) we deduce

1
𝑚

∑︁
𝑖

E
ΩZ|Ω𝑖=(𝐴,⊥),𝑊

𝐼
(︁
𝑌𝑖;𝐸𝐴|𝜔, 𝑧

)︁
𝜉

= 𝑂
(︁
𝛿/𝛼

)︁
, (4.32)

as long as 𝛼 = Ω(
√
𝛿). Next we apply Pinsker’s inequality (Lemma 2.7) and use that 𝑌𝑖 is

classical in 𝜉 to write

1
𝑚

∑︁
𝑖

E
ΩZ|Ω𝑖=(𝐴,⊥),𝑊

E
𝑌𝑖|𝜔,𝑧

⃦⃦⃦⃦
𝜉𝐸𝐴
𝜔−𝑖,𝑧
⊥,𝑦𝑖

− 𝜉𝐸𝐴
𝜔,𝑧

⃦⃦⃦⃦2

1
≤ 1
𝑚

∑︁
𝑖

E
ΩZ|Ω𝑖=(𝐴,⊥),𝑊

E
𝑌𝑖|𝜔,𝑧

𝑆
(︂
𝜉𝐸𝐴
𝜔−𝑖,𝑧
⊥,𝑦𝑖

⃦⃦⃦
𝜉𝐸𝐵
𝜔,𝑧

)︂

= 1
𝑚

∑︁
𝑖

E
ΩZ|Ω𝑖=(𝐴,⊥),𝑊

𝐼(𝑌𝑖;𝐸𝐴|𝜔, 𝑧)𝜉

= 𝑂
(︁
𝛿/𝛼

)︁

by (4.32). To conclude note that Lemma 4.8 and the classical correlated sampling lemma

imply

P𝐼 · PΩZ𝑌𝑖|Ω𝑖=(𝐴,⊥),𝑊 ≈𝑂(
√
𝛿/𝛼2) P𝐼 · PΩ−𝑖Z|𝑊 · P𝑌𝑖

.

The proof of (4.9) essentially follows from Claim 4.14 and Uhlmann’s theorem. We give

the details. First write 𝜉𝐸𝐵
𝜔−𝑖,𝑧
⊥,𝑦𝑖

and 𝜉𝐸𝐴
𝜔−𝑖,𝑧

⊥,⊥
explicitly as

𝜉𝐸𝐴
𝜔−𝑖,𝑧
⊥,𝑦𝑖

∝ (𝐴𝑎𝐶
𝜔−𝑖,⊥

)1/2√𝜌 𝐵𝑏𝐶

𝜔−𝑖,𝑦𝑖

√
𝜌 (𝐴𝑎𝐶

𝜔−𝑖,⊥
)1/2,

𝜉𝐸𝐴
𝜔−𝑖,𝑧

⊥,⊥
∝ (𝐴𝑎𝐶

𝜔−𝑖,⊥
)1/2√𝜌 𝐵𝑏𝐶

𝜔−𝑖,⊥

√
𝜌 (𝐴𝑎𝐶

𝜔−𝑖,⊥
)1/2,

which makes it apparent that the states
⃒⃒⃒⃒ ̃︀Φ𝜔−𝑖,𝑧

⊥,𝑦𝑖

⟩
and

⃒⃒⃒⃒ ̃︀Φ𝜔−𝑖,𝑧
⊥,⊥

⟩
introduced in (4.6) purify 𝜉𝐸𝐴

𝜔−𝑖,𝑧
⊥,𝑦𝑖

and 𝜉𝐸𝐴
𝜔−𝑖,𝑧

⊥,⊥
respectively. Applying Uhlmann’s Theorem, there exists a unitary 𝑉𝜔−𝑖,𝑧,𝑦𝑖

acting
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on 𝐸𝐵 such that

1
𝑚

∑︁
𝑖

E
Ω−𝑖Z|𝑊

E
𝑌𝑖

⃒⃒⃒⃒⟨ ̃︀Φ𝜔−𝑖,𝑧
⊥,𝑦𝑖

⃒⃒⃒⃒
𝑉𝜔−𝑖,𝑧,𝑦𝑖

⃒⃒⃒⃒ ̃︀Φ𝜔−𝑖,𝑧
⊥,⊥

⟩⃒⃒⃒⃒
≥ 1− 1

𝑚

∑︁
𝑖

E
Ω−𝑖Z|𝑊

E
𝑌𝑖

⃦⃦⃦⃦
𝜉𝐸𝐴
𝜔−𝑖,𝑧
⊥,𝑦𝑖

− 𝜉𝐸𝐴
𝜔−𝑖,𝑧

⊥,⊥

⃦⃦⃦⃦
1

≥ 1−𝑂(𝛿1/4/𝛼), (4.33)

where the first inequality follows from the Fuchs-van de Graaf inequality (2.5) and the

second uses Jensen’s inequality and (4.28) from Claim 4.14. Expanding out the squared

Euclidean norm and making sure that 𝑉𝜔−𝑖,𝑧,𝑦𝑖
is chosen so as to ensure that the inner product

⟨̃︀Φ𝜔−𝑖,𝑧
⊥,𝑦𝑖

|𝑉𝜔−𝑖,𝑧,𝑦𝑖
|̃︀Φ𝜔−𝑖,𝑧

⊥,⊥
⟩ is positive real, (4.33) proves (4.10).

A nearly identical argument yields (4.9). It remains to show (4.11). Define

𝜉𝐸𝐴
𝜔−𝑖,𝑧

⊥/𝑥𝑖,𝑦𝑖

= 1
2𝜉

𝐸𝐴
𝜔−𝑖,𝑧
⊥,𝑦𝑖

+ 1
2𝜉

𝐸𝐴
𝜔−𝑖,𝑧
𝑥𝑖,𝑦𝑖

and 𝜉𝐸𝐴
𝜔−𝑖,𝑧

⊥/𝑥𝑖,⊥
= 1

2𝜉
𝐸𝐴
𝜔−𝑖,𝑧

⊥,⊥
+ 1

2𝜉
𝐸𝐴
𝜔−𝑖,𝑧
𝑥𝑖,⊥

For notational clarity, we will suppress mention of 𝜔−𝑖 and 𝑧; it will be implicitly carried

around.

The density matrices 𝜉𝐸𝐴

⊥/𝑥𝑖,𝑦𝑖
and 𝜉𝐸𝐴

⊥/𝑥𝑖,⊥
are purified by |̃︀Φ⊥/𝑥𝑖,𝑦𝑖

⟩ and |̃︀Φ⊥/𝑥𝑖,⊥⟩ respectively.

We will show that these two density matrices are close to together, on average, and hence

by Uhlmann’s Theorem implies that there exists a unitary 𝑉𝑥𝑖,𝑦𝑖
acting on 𝐸𝐵 that moves

|̃︀Φ⊥/𝑥𝑖,𝑦𝑖
⟩ close to |̃︀Φ⊥/𝑥𝑖,⊥⟩. Consider:

E
𝐼

E
Ω−𝑖𝑍|𝑊

E
𝑋𝑖𝑌𝑖

⃦⃦⃦
𝜉𝐸𝐴

⊥/𝑥𝑖,𝑦𝑖
− 𝜉𝐸𝐴

⊥,⊥

⃦⃦⃦
1

= E
𝐼

E
Ω−𝑖𝑍|𝑊

E
𝑋𝑖𝑌𝑖

⃦⃦⃦⃦1
2𝜉

𝐸𝐴
⊥,𝑦𝑖

+ 1
2𝜉

𝐸𝐴
𝑥𝑖,𝑦𝑖
− 𝜉𝐸𝐴

⊥,⊥

⃦⃦⃦⃦
1

≤ E
𝐼

E
Ω−𝑖𝑍|𝑊

E
𝑋𝑖𝑌𝑖

[︂1
2
⃦⃦⃦
𝜉𝐸𝐴

⊥,𝑦𝑖
− 𝜉𝐸𝐴

⊥,⊥

⃦⃦⃦
1

+ 1
2
⃦⃦⃦
𝜉𝐸𝐴
𝑥𝑖,𝑦𝑖
− 𝜉𝐸𝐴

⊥,⊥

⃦⃦⃦
1

]︂
.

We obtained a bound on the first term in the calculations above. It remains to bound the

second term. Again Lemma 4.8 implies

P𝐼 · PΩZ𝑌𝑖|𝐷𝑖=𝐴,𝑊
∼=𝑂(

√
𝛿/𝛼2) P𝐼 · PΩ−𝑖Z|𝑊 · P𝑋𝑖𝑌𝑖

where “∼=” indicates approximate equality, up to relabeling the random variable 𝑀𝑖 with

𝑋𝑖, whose marginals are identical conditioned on 𝐷𝑖 = 𝐴. Thus using the same approach as
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earlier in the proof, we can obtain the bound

E
𝐼

E
Ω−𝑖𝑍|𝑊

E
𝑋𝑖𝑌𝑖

⃦⃦⃦
𝜉𝐸𝐴
𝑥𝑖,𝑦𝑖
− 𝜉𝐸𝐴

⊥,⊥

⃦⃦⃦
1
≤ 𝑂(

√
𝛿/𝛼4).

Thus there exists the desired unitary 𝑉𝑥𝑖,𝑦𝑖
such that

1
𝑚

∑︁
𝑖

E
Ω−𝑖Z|𝑊

E
𝑋𝑖𝑌𝑖

⃦⃦⃦⃒⃒⃒ ̃︀Φ⊥/𝑥𝑖,⊥

⟩
− 𝑉𝑥𝑖,𝑦𝑖

⃒⃒⃒ ̃︀Φ⊥/𝑥𝑖,𝑦𝑖

⟩⃦⃦⃦2
≤ 𝑂(𝛿1/4/𝛼4) (4.34)

proving (4.11).

4.4.3 Extending the argument to more than two players

We extend the argument from the previous sections to games with 𝑘 > 2 entangled players.

We describe the required modifications to the case of 𝑘 = 3; the only hurdle in handling

larger number of players is notational. Furthermore we restrict our attention to the repetition

of the game 𝐺⊥ obtained by applying the anchor transformation to a game 𝐺.

Let 𝐺 be an arbitrary game involving three players Alice, Bob and Charlie. The players’

questions are denoted by 𝑋, 𝑌, 𝑍, and their outputs are denoted as 𝐴,𝐵,𝐶. We will let

𝜇(𝑥, 𝑦, 𝑧) denote the question distribution of the game 𝐺. Let 𝐺⊥ be the anchoring trans-

formation applied to 𝐺 (for some 𝛼), and let 𝜇⊥(𝑥, 𝑦, 𝑧) denote the question distribution of

𝐺⊥. We analyze the behavior of val*(𝐺⊗𝑛⊥ ). Consider an optimal strategy for 𝐺⊗𝑛⊥ , involving

a tripartite state |𝜓⟩ ∈ C𝑑 ⊗ C𝑑 ⊗ C𝑑 and POVM for each of the players: {𝐴𝑎𝑛

𝑥𝑛} for Alice,

{𝐵𝑏𝑛

𝑦𝑛} for Bob, and {𝐶𝑐𝑛

𝑧𝑛} for Charlie. The entangled state |𝜓⟩ is supported on three registers

𝐸𝐴, 𝐸𝐵, and 𝐸𝐶 .

The subset of coordinates that we condition on winning (formerly called 𝐶) will be

denoted by 𝑆. The answers to rounds in 𝑆 that we condition on will be denoted together as

𝑄 = (𝐴𝑆, 𝐵𝑆, 𝐶𝑆) (formerly called 𝑍 = (𝐴𝐶 , 𝐵𝐶)).

The idea behind the proof of the multiplayer extension is to reduce to the two-player case

by “combining” two of the three players and treating them as a single player.
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Dependency-breaking variable. The dependency-breaking variable Ω is constructed so

that for each coordinate 𝑖 /∈ 𝑆, Ω𝑖 fixes 2 out of 3 questions. That is, 𝐷𝑖 is uniformly distributed

over {{𝐴,𝐵}, {𝐴,𝐶}, {𝐵,𝐶}}. The variable 𝐷𝑖 indicates which questions 𝑀𝑖 is coupled to.

For example, if 𝐷𝑖 = {𝐴,𝐵}, then 𝑀𝑖 is coupled to the pair (𝑋𝑖, 𝑌𝑖). The dependency breaking

variable satisfies the property that for all 𝜔, for all 𝑖, P𝑋𝑖𝑌𝑖𝑍𝑖|Ω=𝜔(𝑥, 𝑦, 𝑧) = P𝑋𝑖|Ω=𝜔(𝑥) ·

P𝑌𝑖|Ω=𝜔(𝑦) · P𝑍𝑖|Ω=𝜔(𝑧).

Operators and states. We define the states and operators in a nearly identical way to

the two-player case. We also introduce operators corresponding to the third player, 𝐶𝑐𝑆
𝜔−𝑖,𝑧𝑖

,

𝐶𝑐𝑆
𝜔−𝑖,⊥

, 𝐶𝑐𝑆

𝜔−𝑖,⊥/(𝑥𝑖,𝑦𝑖), etc., defined in the obvious manner.

The states are also defined in a similar way:

|Φ𝑥,𝑦,𝑧⟩ =
√︁
𝐴𝑥 ⊗

√︁
𝐵𝑦 ⊗

√︁
𝐶𝑧|𝜓⟩

where 𝑥, 𝑦, and 𝑧 can be “normal” questions from 𝒳 , 𝒴 , or 𝒵, or they can be ⊥ or a hybrid

such as ⊥/𝑥.

The analogue of Lemma 4.10 in the three-player setting is the following. We use simplified

notation to maximize clarity, and suppress mention of 𝑖, 𝜔−𝑖, and 𝑞 = (𝑎𝑆, 𝑏𝑆, 𝑐𝑆).

Lemma 4.15. For all (𝑥, 𝑦, 𝑧) ∈ 𝒳 ×𝒴 ×𝒵, there exist unitaries 𝑈𝑥, 𝑉𝑦, and 𝑊𝑧 acting on

𝐸𝐴, 𝐸𝐵, and 𝐸𝐶 respectively such that

E
𝑋𝑌 𝑍
‖(𝑈𝑥 ⊗ 𝑉𝑦 ⊗𝑊𝑧)|Φ⊥,⊥,⊥⟩ − |Φ𝑥,𝑦,𝑧⟩‖2 = 𝑂(𝛿1/4/𝛼2𝑘).

Proof sketch. Lemma 4.15, as in the two-player case, is proved in two steps. The first step

is to establish the existence of unitaries 𝑈𝑥, 𝑉𝑦, and 𝑊𝑧 such that 𝑈𝑥|Φ⊥,⊥,⊥⟩ ≈ |Φ𝑥,⊥,⊥⟩,

𝑉𝑥|Φ⊥,⊥,⊥⟩ ≈ |Φ⊥,𝑦,⊥⟩, and 𝑊𝑧|Φ⊥,⊥,⊥⟩ ≈ |Φ⊥,⊥,𝑧⟩, with the unitaries acting on the appropriate

spaces.

To prove, say, the existence of 𝑈𝑥, we treat Bob and Charlie as a single player – call him

“SuperBob” – and use the analysis from the two-player case where the game 𝐺 is a two player

game involving Alice and SuperBob. Using the same reasoning as in the two-player case, we
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get that

E
𝑋𝑌
‖(𝑈𝑥 ⊗ 𝑉𝑦 ⊗ I)|Φ⊥,⊥,⊥⟩ − |Φ𝑥,𝑦,⊥⟩‖2 = 𝑂(𝛿1/4/𝛼2𝑘).

It then only remains to show that, on average over (𝑥, 𝑦, 𝑧), (I⊗ I⊗𝑊𝑧)|Φ𝑥,𝑦,⊥⟩ is close to

|Φ𝑥,𝑦,𝑧⟩:

‖𝑊𝑧|Φ𝑥,𝑦,⊥⟩ − |Φ𝑥,𝑦,𝑧⟩‖

=
⃦⃦⃦
𝑊𝑧𝐶⊥𝐶

−1/2
⊥/𝑧 |Φ𝑥,𝑦,⊥/𝑧⟩ − 𝐶𝑧𝐶−1/2

⊥/𝑧 |Φ𝑥,𝑦,⊥/𝑧⟩
⃦⃦⃦

=
⃦⃦⃦
𝐻𝑥,𝑦,𝑧 ⊗𝑊𝑧𝐶⊥𝐶

−1/2
⊥/𝑧 |Φ𝑥,𝑦,⊥/𝑧⟩ −𝐻𝑥,𝑦,𝑧 ⊗ 𝐶𝑧𝐶−1/2

⊥/𝑧 |Φ𝑥,𝑦,⊥/𝑧⟩
⃦⃦⃦

≈
⃦⃦⃦
𝑊𝑧𝐶⊥𝐶

−1/2
⊥/𝑧 |Φ⊥,⊥,⊥/𝑧⟩ − 𝐶𝑧𝐶−1/2

⊥/𝑧 |Φ⊥,⊥,⊥/𝑧⟩
⃦⃦⃦

= ‖𝑊𝑧|Φ⊥,⊥,⊥⟩ − |Φ⊥,⊥,𝑧⟩‖

≈ 0,

where 𝐻𝑥,𝑦,𝑧 is a unitary acting on 𝐸𝐴𝐸𝐵 jointly such that 𝐻𝑥,𝑦,𝑧|Φ𝑥,𝑦,⊥/𝑧⟩ ≈ |Φ⊥,⊥,⊥/𝑧⟩. Such

a unitary is analogous to that in (4.11). Taking into account the required normalization

factors in to this calculation completes the proof of Lemma 4.15,

The main theorem for the case of 𝑘 > 2 entangled players follows from Lemma 4.15 using

the same steps as in the two-player case.

4.4.4 A threshold theorem

We also observe that our proof nearly immediately yields a threshold version of our parallel

repetition theorem: we can give an exponentially small bound on the probability that the

players are able to win significantly more than a (1− 𝜀)𝑛 coordinates in the repeated game

𝐺⊗𝑛⊥ , where val*(𝐺⊥) = 1 − 𝜀. In [52], Rao shows how a Lemma of the form Lemma 4.9

yields not only a parallel repetition theorem, but also gives a concentration bound. Using

essentially the same argument, we get the following theorem:

Theorem 4.16. Let 𝐺 be an 𝛼-anchored 𝑘-player game with val*(𝐺) ≤ 1− 𝜀. Then for all

integer 𝑛 ≥ 1 the probability that in the game 𝐺⊗𝑛 the players can win more than (1− 𝜀+ 𝛾)𝑛
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games is at most (︁
1− 𝛾9/2

)︁𝑐 𝛼8𝑘 𝑛/𝑠

where 𝑐 is a universal constant and 𝑠 is the length of the players’ answers.

4.5 Classical multiplayer games

Perhaps the most well-known open problem about the classical parallel repetition of games is

whether an analogue of Raz’s theorem holds for games with more than two players. While

the two-player case already presented a number of non-trivial difficulties, proving a parallel

repetition theorem for three or more players is believed to require substantially new ideas.

In this section we show that multiplayer anchored games satisfy a classical parallel

repetition theorem. Thus, the anchoring transformation along with parallel repetition yields a

general hardness amplification technique for classical multiplayer games involving any number

of players.1

Theorem 4.17. Let 𝐺 = (𝒳 ,𝒜, 𝜇, 𝑉 ) be a 𝑘-player 𝛼-anchored game such that val(𝐺) ≤ 1−𝜀.

Then

val(𝐺⊗𝑛) ≤ exp
(︃
−𝛼

2𝑘 · 𝜀3 · 𝑛
384 · 𝑠 · 𝑘2

)︃
, (4.35)

where 𝑠 = log |𝒜|.

For the remainder of this section we fix a 𝑘-player 𝛼-anchored game 𝐺 = (𝒳 ,𝒜, 𝜇, 𝑉 ),

an integer 𝑛, and a deterministic strategy for the 𝑘 players in the repeated game 𝐺⊗𝑛 that

achieves success probability val(𝐺⊗𝑛). In Section 4.5.1 we introduce the notation, random

variables and basic lemmas for the proof. The proof of Theorem 4.17 itself is given in

Section 4.5.2.

1There are other ways to perform hardness amplification of classical multiplayer games, including trans-
forming a 𝑘-player game 𝐺 into an equivalent two-player projection game 𝐺′ (where one player simulates the
original 𝑘 players, and the second player is used to consistently check the answers of the new “super-player”),
and then applying Raz’s parallel repetition theorem to 𝐺′. However, this 𝑘-to-2 transformation does not
preserve quantum completeness, in general, which may be a useful feature. The anchoring transformation, on
the other hand, preserves quantum completeness, and simultaneously supports both classical and quantum
hardness parallel repetition.
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4.5.1 Breaking classical multipartite correlations

We refer to Section 2.1 for basic notation related to multiplayer games.

Let 𝐶 ⊆ [𝑛] a fixed set of coordinates for the repeated game 𝐺⊗𝑛 of size |𝐶| = 𝑛−𝑚. It

will be convenient to fix 𝐶 = {𝑚+ 1,𝑚+ 2, . . . , 𝑛}; the symmetry of the problem will make

it clear that this is without loss of generality. Let Z = 𝐴𝐶 = (𝐴1
𝐶 , 𝐴

2
𝐶 , . . . , 𝐴

𝑘
𝐶) denote the

players’ answers associated with the coordinates indexed by 𝐶.

For 𝑡 ∈ [𝑘] let 𝒴 𝑡 = (𝒳 𝑡 ∖ 𝒳 𝑡
⊥) ∪ {⊥}, and define a random variable

𝑌 𝑡 =

⎧⎪⎪⎨⎪⎪⎩
𝑋 𝑡, 𝑋 𝑡 ∈ 𝒳 𝑡 ∖ 𝒳 𝑡

⊥

⊥, 𝑋 𝑡 ∈ 𝒳 𝑡
⊥

. (4.36)

Let 𝒴 = 𝒴1 × 𝒴2 × . . .× 𝒴𝑘 and 𝑌 = (𝑌 1, 𝑌 2, . . . , 𝑌 𝑘). For 𝐺⊗𝑛 we write

𝑌 ⊗𝑛 = (𝑌1, 𝑌2, . . . , 𝑌𝑛) =
(︁(︁
𝑌 1

1 , . . . , 𝑌
𝑘

1

)︁
,
(︁
𝑌 1

2 , . . . , 𝑌
𝑘

2

)︁
, . . . ,

(︁
𝑌 1
𝑛 , . . . , 𝑌

𝑘
𝑛

)︁)︁
.

Note that each 𝑘-tuple 𝑌𝑖 is a deterministic function of 𝑋𝑖. Furthermore, we will write 𝑌 −𝑡𝑖

to denote 𝑌𝑖 with the 𝑡-th coordinate 𝑌 𝑡
𝑖 omitted.

For 𝑖 ∈ [𝑛] let 𝐷𝑖 be a subset of [𝑘] of size 𝑘− 1 chosen uniformly at random, and 𝐷𝑖 ∈ [𝑘]

its complement in [𝑘]. Let 𝑀𝑖 = 𝑌 𝐷𝑖
𝑖 denote the coordinates of 𝑌 associated to indices in 𝐷𝑖.

Define the dependence-breaking random variable Ω𝑖 as

Ω𝑖 =

⎧⎪⎪⎨⎪⎪⎩
(𝐷𝑖,𝑀𝑖) 𝑖 ∈ 𝐶

𝑋𝑖 𝑖 ∈ 𝐶
. (4.37)

The importance of Ω is captured in the following lemma.

Lemma 4.18. (Local Sampling) Let 𝑋,Z,Ω be as above. Then P𝑋−𝑖|𝑋𝑖Ω−𝑖Z is a product

distribution across the players:

P𝑋−𝑖|𝑋𝑖Ω−𝑖Z =
𝑘∏︁
𝑡=1

P𝑋𝑡
−𝑖|Ω

𝑡
−𝑖Z𝑡𝑋𝑡

𝑖
.
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Proof. Conditioned on 𝑀𝑖 = 𝑌 𝐷𝑖
𝑖 each 𝑋𝑖 = (𝑋1

𝑖 , 𝑋
2
𝑖 , . . . , 𝑋

𝑘
𝑖 ) is a product distribution,

hence P𝑋−𝑖|Ω−𝑖𝑋𝑖
is product. Since for 𝑡 ∈ [𝑘] Z𝑡 is a deterministic function of 𝑋 𝑡 the same

holds of P𝑋−𝑖|Ω−𝑖Z𝑋𝑖
.

Lemma 4.18 crucially relies on the sets 𝐷𝑗 being of size 𝑘−1: if two or more of the players’

questions are unconstrained in a coordinate it is no longer necessarily true that P𝑋−𝑖|Ω−𝑖Z𝑋𝑖

is product across all players.

Let 𝑊 = 𝑊𝐶 = ⋀︀𝐶
𝑖=1 𝑊𝑖 denote the event that the players’ answers Z to questions in the

coordinates indexed by 𝐶 satisfy the predicate 𝑉 . Let

𝛿 =
|𝐶| log |𝒜|+ log 1

Pr(𝑊𝐶)

𝑚
. (4.38)

The following lemma and its corollary are direct consequences of analogous lemmas used

in the analysis of repeated two-player games, as stated in e.g. [?, Lem. 5] and [?, Cor. 6].

They do not depend on the structure of the game, and only rely on 𝑊 being an event defined

only on (𝑋𝐶 ,Z).

Lemma 4.19. We have

(𝑖) E
𝑖∈[𝑚]
‖P𝑋𝑖𝑌𝑖Ω𝑖|𝑊 − P𝑋𝑖𝑌𝑖Ω𝑖

‖ ≤
√
𝛿.

(𝑖𝑖) E
𝑖∈[𝑚]
‖P𝑋𝑖𝑌𝑖ZΩ−𝑖|𝑊 − P𝑋𝑖|𝑌𝑖

P𝑌𝑖ZΩ−𝑖|𝑊‖ ≤
√
𝛿

(𝑖𝑖𝑖) E
𝑖∈[𝑚]
‖P𝑌𝑖ZΩ|𝑊 − P𝑌𝑖|Ω𝑖

PZΩ|𝑊‖ ≤
√
𝛿.

Proof. Item (i) follows directly from [37, Lem. 5] by taking 𝑈𝑖 = 𝑋𝑖𝑌𝑖Ω𝑖. For (ii) apply [37,

Cor. 6] with 𝑈𝑖 = 𝑋𝑖 and 𝑇 = (𝑌1, 𝑌2, . . . , 𝑌𝑚, 𝑋𝐶) to get

E
𝑖∈[𝑚]
‖P𝑋𝑖Z𝑌[𝑚]𝑋𝐶 |𝑊 − P𝑋𝑖|𝑌𝑖

P𝑌𝑖Z𝑌[𝑚]∖{𝑖}𝑋𝐶 |𝑊‖ ≤
√
𝛿, (4.39)

which is stronger than (ii); (ii) follows by marginalizing 𝑌 𝐷𝑖
𝑖 in each term. Finally, the same

corollary applied with 𝑈𝑖 = 𝑌𝑖 and 𝑇 = Ω shows (iii).
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Corollary 4.20.

E
𝑖∈[𝑚]

𝑘∑︁
𝑡=1
‖P𝑌𝑖

PZΩ−𝑖|𝑊𝑌𝑖
− P𝑌𝑖

PZΩ−𝑖|𝑊𝑌 −𝑡
𝑖
‖ ≤ 3𝑘 ·

√
𝛿.

Proof. We have P𝑌𝑖|Ω𝑖
PZΩ|𝑊 = P𝑌𝑖|Ω𝑖

PΩ𝑖|𝑊PZΩ−𝑖|𝑊Ω𝑖
. Applying Lemma 2.1 with Q𝐹 = PΩ𝑖|𝑊 ,

S𝐹 = PΩ𝑖
, and R𝐺|𝐹 = P𝑌𝑖|Ω𝑖

PZΩ−𝑖|𝑊Ω𝑖
, we see that

E
𝑖∈[𝑚]
‖P𝑌𝑖|Ω𝑖

PZΩ|𝑊 − P𝑌𝑖Ω𝑖
PZΩ−𝑖|𝑊Ω𝑖

‖ = E
𝑖∈[𝑚]
‖PΩ𝑖|𝑊 − PΩ𝑖

‖ ≤
√
𝛿,

where the last inequality follows from Lemma 4.19, item (i). Combining the above with item

(iii) of the same Lemma, we have

E
𝑖∈[𝑚]
‖P𝑌𝑖ZΩ|𝑊 − P𝑌𝑖Ω𝑖

PZΩ−𝑖|𝑊Ω𝑖
‖ ≤ 2

√
𝛿. (4.40)

Noting that Ω𝑖 is determined by 𝑌𝑖 (the 𝐷𝑖 are completely independent of everything

else), (4.40) implies

E
𝑖∈[𝑚]

E
𝑡∈[𝑘]
‖P𝑌𝑖ZΩ−𝑖|𝑊 − P𝑌𝑖

PZΩ−𝑖|𝑊𝑌 −𝑡
𝑖
‖ = E

𝑖∈[𝑚]
‖P𝑌𝑖ZΩ−𝑖|𝑊 − P𝑌𝑖

PZΩ−𝑖|𝑊Ω𝑖
‖

≤ 2
√
𝛿.

Finally, notice that Lemmas 2.1 and 4.19 imply E𝑖∈[𝑚] ‖P𝑌𝑖ZΩ−𝑖|𝑊−P𝑌𝑖
PZΩ−𝑖|𝑊𝑌𝑖

‖ = E𝑖∈[𝑚] ‖P𝑌𝑖
−

P𝑌𝑖|𝑊‖ ≤
√
𝛿; the desired result follows.

4.5.2 Proof of the parallel repetition theorem

This section is devoted to the proof of Theorem 4.17. The main ingredient of the proof is

given in the next proposition.

Proposition 4.21. Let 𝐶 ⊆ [𝑛] and 𝑋,Z,Ω−𝑖 be defined as in Section 4.5.1. Then

E
𝑖∈[𝑚]

⃦⃦⃦
P𝑋𝑖Ω−𝑖Z|𝑊 − P𝑋𝑖

PΩ−𝑖Z|𝑊,𝑌𝑖=⊥𝑘

⃦⃦⃦
≤ (6𝑘𝛼−𝑘 + 1)

√
𝛿, (4.41)

where 𝛿 is defined in (4.38).
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Theorem 4.17 follows from this proposition in a relatively standard fashion; this is done

at the end of this section. Let us now prove Proposition 4.21 assuming a certain technical

statement, Lemma 4.22. This lemma is proved immediately after.

Proof of Proposition 4.21. First observe that

⃦⃦⃦
P𝑋𝑖Ω−𝑖Z|𝑊 − P𝑋𝑖

PΩ−𝑖Z|𝑊,𝑌𝑖=⊥𝑘

⃦⃦⃦
=
⃦⃦⃦
P𝑋𝑖𝑌𝑖Ω−𝑖Z|𝑊 − P𝑋𝑖𝑌𝑖

PΩ−𝑖Z|𝑊,𝑌𝑖=⊥𝑘

⃦⃦⃦

as 𝑌𝑖 is a deterministic function of 𝑋𝑖. Applying Lemma 4.19, item (ii) we get

E
𝑖∈[𝑚]

⃦⃦⃦
P𝑋𝑖𝑌𝑖Ω−𝑖Z|𝑊 − P𝑋𝑖|𝑌𝑖

P𝑌𝑖Ω−𝑖Z|𝑊

⃦⃦⃦
≤
√
𝛿.

The latter distribution can be written as P𝑌𝑖|𝑊P𝑋𝑖|𝑌𝑖
PΩ−𝑖Z|𝑊𝑌𝑖

. Applying Lemma 2.1 with

Q𝐹 = P𝑌𝑖|𝑊 and S𝐹 = P𝑌𝑖
we see that

⃦⃦⃦
P𝑋𝑖|𝑌𝑖

P𝑌𝑖Ω−𝑖Z|𝑊 − P𝑋𝑖𝑌𝑖
PΩ−𝑖Z|𝑊𝑌𝑖

⃦⃦⃦
=
⃦⃦⃦
P𝑌𝑖|𝑊 − P𝑌𝑖

⃦⃦⃦
,

which is bounded by
√
𝛿 on average over 𝑖 by Lemma 4.19, item (i). Hence

E
𝑖∈[𝑚]

⃦⃦⃦
P𝑋𝑖Ω−𝑖Z|𝑊 − P𝑋𝑖

PΩ−𝑖Z|𝑊,𝑌𝑖=⊥𝑘

⃦⃦⃦
≤ 2
√
𝛿 + E

𝑖∈[𝑚]

⃦⃦⃦
P𝑋𝑖𝑌𝑖

PΩ−𝑖Z|𝑊𝑌𝑖
− P𝑋𝑖𝑌𝑖

PΩ−𝑖Z|𝑊,𝑌𝑖=⊥𝑘

⃦⃦⃦
= 2
√
𝛿 + E

𝑖∈[𝑚]

⃦⃦⃦
P𝑌𝑖

PΩ−𝑖Z|𝑊𝑌𝑖
− P𝑌𝑖

PΩ−𝑖Z|𝑊,𝑌𝑖=⊥𝑘

⃦⃦⃦
,

where the equality follows from Lemma 2.1 applied with R𝐺|𝐹 = P𝑋𝑖|𝑌𝑖
. Applying the triangle

inequality,

E
𝑖∈[𝑚]

⃦⃦⃦
P𝑋𝑖𝑌𝑖

PΩ−𝑖Z|𝑊𝑌𝑖
− P𝑋𝑖𝑌𝑖

PΩ−𝑖Z|𝑊,𝑌𝑖=⊥𝑘

⃦⃦⃦
= E

𝑖∈[𝑚]

⃦⃦⃦
P𝑌𝑖

PΩ−𝑖Z|𝑊𝑌𝑖
− P𝑌𝑖

PΩ−𝑖Z|𝑊,𝑌𝑖=⊥𝑘

⃦⃦⃦
≤ E

𝑖∈[𝑚]

𝑘∑︁
𝑡=1

⃦⃦⃦
P𝑌𝑖

PΩ−𝑖Z|𝑊𝑌 <𝑡
𝑖 =⊥𝑡−1,𝑌 ≥𝑡

𝑖
− P𝑌𝑖

PΩ−𝑖Z|𝑊𝑌 ≤𝑡
𝑖 =⊥𝑡,𝑌 >𝑡

𝑖

⃦⃦⃦
(4.42)

≤ 6𝑘𝛼−𝑘 ·
√
𝛿, (4.43)
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where (4.42) is proved by Lemma 4.22 below and (4.43) follows from Corollary 4.20.

Lemma 4.22. Let 𝑆 ⊂ [𝑘] and 𝑡 ∈ 𝑆. Then

⃦⃦⃦
P𝑌𝑖

PΩ−𝑖Z|𝑊𝑌 𝑆
𝑖 =⊥𝑆 ,𝑌 𝑆

𝑖

− P𝑌𝑖
P

Ω−𝑖Z|𝑊𝑌
𝑆∪{𝑡}

𝑖 =⊥𝑆∪{𝑡},𝑌
𝑆∖{𝑡}

𝑖

⃦⃦⃦
≤ 2𝛼−(|𝑆|+1) ·

⃦⃦⃦
P𝑌𝑖

PZΩ−𝑖|𝑊𝑌𝑖
− P𝑌𝑖

PZΩ−𝑖|𝑊𝑌 −𝑡
𝑖

⃦⃦⃦
. (4.44)

Proof. In the proof for ease of notation we omit the subscript 𝑖 and write 𝑌 instead of 𝑌𝑖.

After relabeling we may assume 𝑆 = {1, 2, . . . , 𝑟 − 1} and 𝑡 = 𝑟 where 1 ≤ 𝑟 < 𝑘. Expanding

the expectation over 𝑌 explicitly we can rewrite the left-hand side of (4.44) as

⃦⃦⃦
P𝑌 ·

(︁
PΩ−𝑖Z|𝑊,𝑦≥𝑟,𝑦<𝑟=⊥𝑟−1 − PΩ−𝑖Z|𝑊,𝑦>𝑟,𝑦≤𝑟=⊥𝑟

)︁⃦⃦⃦
. (4.45)

Next we use a symmetrization argument to bound the above expression. Consider a random

variable 𝑌 that is a copy of 𝑌 , and is coupled to 𝑌 in the following way: 𝑌 −𝑟 = 𝑌 −𝑟, and

conditioned on any setting of 𝑌 𝑟 = 𝑦𝑟, 𝑌 𝑟 and 𝑌 𝑟 are independent. Using the fact that

Pr[𝑌 𝑟 = ⊥] ≥ 𝛼 conditioned on any value of 𝑌 −𝑟 = 𝑈−𝑟 = 𝑦−𝑟, we get that the expression

in (4.45) is at most

𝛼−1
⃦⃦⃦
P𝑌 −𝑟P𝑌 𝑟|𝑌 −𝑟P𝑌 𝑟|𝑌 −𝑟 ·

(︁
PΩ−𝑖Z|𝑊,𝑦>𝑟,𝑦𝑟,𝑦<𝑟=⊥𝑟−1 − PΩ−𝑖Z|𝑊,𝑦>𝑟,𝑦𝑟,𝑦<𝑟=⊥𝑟−1

)︁⃦⃦⃦
.

Using the triangle inequality and symmetry of 𝑌 and 𝑌 , this expression can be bounded by

2𝛼−1 ·
⃦⃦⃦
P𝑌 ·

(︁
PΩ−𝑖Z|𝑊,𝑦>𝑟,𝑦𝑟,𝑦<𝑟=⊥𝑟−1 − PΩ−𝑖Z|𝑊,𝑦>𝑟,𝑦<𝑟=⊥𝑟−1

)︁⃦⃦⃦
,

which after noting that the quantity ‖PΩ−𝑖Z|𝑊,𝑦>𝑟,𝑦𝑟,𝑦<𝑟=⊥𝑟−1 − PΩ−𝑖Z|𝑊,𝑦>𝑟,𝑦≤𝑟=⊥𝑟‖ is indepen-

dent of the variable 𝑌 <𝑟, can be rewritten as

2𝛼−1 ·
⃦⃦⃦
P𝑌 ≥𝑟 ·

(︁
PΩ−𝑖Z|𝑊,𝑦>𝑟,𝑦𝑟,𝑦<𝑟=⊥𝑟−1 − PΩ−𝑖Z|𝑊,𝑦>𝑟,𝑦<𝑟=⊥𝑟−1

)︁⃦⃦⃦
.

Using that the event that 𝑌 <𝑟 = ⊥
𝑟−1 occurs with probability at least 𝛼𝑟−1 and P𝑌 ≥𝑟|𝑌 <𝑟=⊥𝑟−1 =
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P𝑌 ≥𝑟 by the anchor property, we can finally bound (4.45) by

2𝛼−𝑟 · ‖P𝑌 PZΩ−𝑖|𝑊𝑌 − P𝑌 PZΩ−𝑖|𝑊𝑌 −𝑟‖,

which is the desired result.

We prove Theorem 4.17 by iteratively applying Proposition 4.21 as follows.

Proof of Theorem 4.17. Let 𝐶0 = ∅ and 𝛿0 = 0. While (6𝑘𝛼−𝑘 +1)
√
𝛿𝑠 ≤ 𝜀/2, by Proposition

4.21, we can choose 𝑖 ∈ 𝐶𝑠 with
⃦⃦⃦
P𝑋𝑖Ω−𝑖Z|𝑊 − P𝑋𝑖

PΩ−𝑖Z|𝑊,𝑌𝑖=⊥𝑘

⃦⃦⃦
≤ 𝜀/2. Set 𝐶𝑠+1 = 𝐶𝑠 ∪ {𝑖}

and 𝛿𝑠+1 = (|𝐶𝑠+1| log |𝒜|+ log 1/Pr(𝑊𝐶𝑠+1))/𝑚. First we show that throughout this process

the bound

Pr[𝑊𝐶𝑠 ] ≤ (1− 𝜀/2)|𝐶𝑠| (4.46)

holds. Since by the choice of 𝑖 one has
⃦⃦⃦
P𝑋𝑖Ω−𝑖Z|𝑊𝐶

− P𝑋𝑖
PΩ−𝑖Z|𝑊𝐶 ,𝑌𝑖=⊥𝑘

⃦⃦⃦
≤ 𝜀/2, to establish

(4.46) it will suffice to show that

Pr(𝑊𝑖|𝑊𝐶) ≤ val(𝐺) +
⃦⃦⃦
P𝑋𝑖Ω−𝑖Z|𝑊𝐶

− P𝑋𝑖
PΩ−𝑖Z|𝑊𝐶 ,𝑌𝑖=⊥𝑘

⃦⃦⃦
. (4.47)

The proof of (4.47) is based on a rounding argument. Consider the following strategy for 𝐺:

First, the players use shared randomness to obtain a common sample from PΩ−𝑖Z|𝑊𝐶 ,𝑌𝑖=⊥𝑘 .

After receiving her question 𝑥*𝑡 , player 𝑡 ∈ [𝑘] samples questions for the remaining coordinates

according to P𝑋𝑡
−𝑖|Ω

𝑡
−𝑖Z𝑡𝑋𝑡

𝑖
, forming the tuple 𝑋 𝑡 = (𝑋 𝑡

−𝑖, 𝑥
*
𝑡 ). She determines her answer

𝑎𝑡𝑖 ∈ 𝒜𝑡𝑖 according to the strategy for 𝐺⊗𝑛. The distribution over questions 𝑋 implemented

by players following this strategy is

P𝑋𝑖
PΩ−𝑖Z|𝑊𝐶𝑌𝑖=⊥𝑘

𝑘∏︁
𝑡=1

P𝑋𝑡
−𝑖|Ω

𝑡
−𝑖Z𝑡𝑋𝑡

𝑖
,

which by Lemma 4.18 is equal to

P𝑋𝑖
PΩ−𝑖Z|𝑊𝐶𝑌𝑖=⊥𝑘P𝑋−𝑖|Ω−𝑖Z.
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On the other hand from the definition of Ω−𝑖 we have

P𝑋Ω−𝑖Z|𝑊𝐶
= P𝑋𝑖Ω−𝑖Z|𝑊𝐶

P𝑋−𝑖|Ω−𝑖Z𝑊𝐶
= P𝑋𝑖Ω−𝑖Z|𝑊𝐶

P𝑋−𝑖|Ω−𝑖Z.

Applying Lemma 2.1 with 𝑅 = P𝑋−𝑖|Ω−𝑖Z it follows that

⃦⃦⃦
P𝑋ZΩ−𝑖|𝑊𝐶

− P𝑋𝑖
PΩ−𝑖Z|𝑊𝐶𝑌𝑖=⊥𝑘P𝑋−𝑖|Ω−𝑖Z

⃦⃦⃦
=
⃦⃦⃦
P𝑋𝑖Ω−𝑖Z|𝑊𝐶

− P𝑋𝑖
PΩ−𝑖Z|𝑊𝐶 ,𝑌𝑖=⊥𝑘

⃦⃦⃦
.

Now by definition the winning probability of the extracted strategy for 𝐺 is at most val(𝐺),

and (4.47) follows.

Let now 𝐶 be the final set of coordinates when the above-described process stops; at this

point we must have

𝛿 =
|𝐶| log |𝒜|+ log 1

Pr(𝑊𝐶)

𝑛− |𝐶|
>

𝛼2𝑘𝜀2

48 · 𝑘2 .

If |𝐶| ≥ 𝑛/2 we are already done by (4.46). Suppose
|𝐶| log |𝒜|+log( 1

Pr[𝑊𝐶 ] )
𝑛

> 𝛼2𝑘𝜖2

96·𝑘2 . If

log( 1
Pr(𝑊𝐶)) ≥

𝑛·𝛼2𝑘𝜖2

192·𝑘2 we are again done; hence, we can assume

|𝐶| log |𝒜|
𝑛

>
𝛼2𝑘𝜀2

192 · 𝑘2 .

Now plugging the lower bound on the size of 𝐶 in (4.46) we get

val(𝐺⊗𝑛) ≤ Pr(𝑊𝐶) ≤ exp
(︃
−𝛼

2𝑘 · 𝜀3 · 𝑛
384 · 𝑘2 · 𝑠

)︃

where 𝑠 = log |𝒜|, which completes the proof.

4.6 Some remarks on multiplayer parallel repetition

We conclude this chapter with some remarks about Theorem 4.17 and the more general

problem of multiplayer parallel repetition. Our analysis of repeated anchored games follows

the information-theoretic approach of Raz and Holenstein. It is a natural (old) question

whether one can extend this framework to prove parallel repetition for general multiplayer
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games?.

At first sight the Raz/Holenstein framework may seem quite suitable for multiplayer

parallel repetition. For instance, it is folklore that classically the approach extends to the

case of free games with any number of players, and furthermore, many of the other technical

components of the proof readily carry over in much generality. Despite these positive signs,

attempts to extend Raz’s original argument to the general multiplayer setting have so far

failed for different and rather interesting technical reasons. Embarrassingly, to our knowledge,

it is not even known how to extend the information-theoretic approach to prove that the

value of a repeated 𝑘-player game decays at all!2

We give an example of one of the difficulties in proving a multiplayer parallel repetition

theorem for general games. Consider the problem of defining an appropriate dependency-

breaking variable Ω in the multiplayer setting. There are two competing demands on Ω: on

one hand the breaking of dependencies between the players’ respective questions seems to

require it to contain as many of the players’ questions as possible for each coordinate 𝑖 ∈ 𝐶.

In fact, if the correlations between the players inputs’ are generic, it seems hard to avoid

the need to keep at least 𝑘 − 1 inputs in each Ω𝑖, as we do in Lemma 4.18. On the other

hand, for correlated sampling to be possible, it seems necessary for Ω to specify very few of

the questions per coordinate, or in fact in the generic case, at most 1; as soon as 𝑘 ≥ 3 both

requirements are in direct contradiction.

An insight behind our result is that it is sometimes possible to decouple the above

two competing demands on Ω (i.e. the dependency-breaking and the correlated sampling

components). More precisely, when the base game is anchored, we show how to define a

useful dependency-breaking variable (or quantum state, in the entangled players setting) that

can be sampled without correlated sampling. With correlated sampling out of the way, the

aforementioned conflict between correlated sampling and dependency-breaking disappears,

allowing us to proceed with the argument.

2One can modify an argument of Verbitsky based on Hales-Jewett theorem to show that if val(𝐺) < 1,
then val(𝐺⊗𝑛) must go to 0 as 𝑛 grows [59], but the bound on the rate of decay is extremely poor.
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Chapter 5

Conclusion and Open Problems

In this thesis, we showed two methods for proving strong hardness amplification results

for entangled games and multiplayer games. Many interesting problems about the parallel

repetition of multiplayer and entangled games however remain open. Perhaps the most

pressing of these is the problem of obtaining a complete extension of Raz’s theorem for

general entangled two-player games (see Yuen [63] for a new work in this direction obtaining

a polynomial decay for all two-player entangled games). For example, obtaining a fully

quantum analogue of Raz’s theorem, as was the case for Raz’s theorem itself, is likely to have

important implications in the setting of communication complexity. One promising candidate

approach could be to leverage the recent ideas related to quantum information complexity

[57, 14].

Similarly, proving a parallel repetition theorem with exponential decay for general mul-

tiplayer games remain a fascinating challenge. In our view, however, this problem (even

classically) seems more challenging than the two-player entangled case, as its difficulties are

related to communication complexity and circuit complexity lower bounds.

An important message of Chpater 3 is that there is a modified form of game concatenation

with no adverse effect on the entangled value. This is notable since ordinary concatenation

may appear to be not very well-behaved with respect to quantum strategies: we typically do

not expect that entangled players would be able to answer a number of questions from a game

𝐺 simultaneously, while preserving the same question/answer statistics as in 𝐺, as players’

measurement operators associated with different questions generally do not commute.
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The concatenation and composition of games play an important role in the classical

setting in the context of PCPs [5, 4, 25]. It remains to be seen whether ideas related to our

ordered fortification can be useful in lifting some of these techniques to the quantum world.

Even though we believe concatenation will prove a useful tool in quantum complexity and

cryptography as has been the case case in classical complexity, in the context of game variant

of quantum PCP [31], one should bear in mind the recent work of Ji [42] which rules out

some amplification approaches toward this conjecture.
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